
www.manaraa.com

University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Dissertations and Theses in Biological Sciences Biological Sciences, School of

8-2009

Physiology, Regulation, and Pathogenesis of
Nitrogen Metabolism in the Opportunistic Fungal
Pathogen Candida albicans
Suman Ghosh
University of Nebraska - Lincoln, sumanghosh_143@yahoo.com

Follow this and additional works at: http://digitalcommons.unl.edu/bioscidiss

Part of the Life Sciences Commons

This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Ghosh, Suman, "Physiology, Regulation, and Pathogenesis of Nitrogen Metabolism in the Opportunistic Fungal Pathogen Candida
albicans" (2009). Dissertations and Theses in Biological Sciences. 4.
http://digitalcommons.unl.edu/bioscidiss/4

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscidiss?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/biologicalsciences?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscidiss?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/bioscidiss/4?utm_source=digitalcommons.unl.edu%2Fbioscidiss%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

Physiology, Regulation, and Pathogenesis of Nitrogen Metabolism in the Opportunistic 

Fungal Pathogen Candida albicans  

 

By 

 

Suman Ghosh 

 

A Dissertation 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Doctor of Philosophy 

 

 

Major: Biological Sciences 

 

Under the Supervision of Professor Kenneth W. Nickerson 

 

Lincoln, Nebraska 

 

August, 2009 



www.manaraa.com

 

 

Physiology, Regulation, and Pathogenesis of Nitrogen Metabolism in the Opportunistic 

Fungal Pathogen Candida albicans 

 Suman Ghosh 

University of Nebraska, 2009 

 

Advisor: Kenneth W. Nickerson 

 

ABSTRACT 

Candida albicans is an opportunistic polymorphic fungus that causes clinically 

important disease candidiasis to humans. Being polymorphic C. albicans can grow in 

yeast, hyphae, or pseudohyphae forms and the switch from one form to another is 

required for virulence. The morphological transitions from one phase to another are 

carefully orchestrated events which are regulated by several signal transduction 

pathways. Several environmental factors determine the morphology of the fungus C. 

albicans. For example growth at lower temperature ~30 ºC, in preferred nitrogen sources 

cause the fungus to grow as yeasts while at higher temperature ~37 ºC and in poor 

nitrogen sources, in the presence of serum, N-acetyl glucosamine, or high CO2, C. 

albicans cells grow as hyphae. Under several clinically relevant circumstances, including 

biofilms, C. albicans cells encounter poor or low nitrogen conditions. In this project 

utilization of different nitrogen sources by C. albicans was evaluated and their roles in 

pathogenesis were studied. The aromatic amino acids are metabolized when the C. 

albicans cells grow under poor nitrogen conditions, and the resulting carbon skeletons are 

secreted outside the cell. They are well known as fusel oils or aromatic alcohols. The 
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aromatic alcohol biosynthesis is enhanced under anaerobic conditions compared to 

aerobic conditions, by the presence of precursor amino acids (phenylalanine, tyrosine, or 

tryptophan), and in alkaline conditions compared to acidic conditions, but it is reduced 

greatly in the presence of ammonia. Also, aromatic alcohol yield is dependent on the 

transcription regulators Aro80p and Rim101p. In another project the role of arginine 

metabolism in the yeast to hypha morphological switch was studied. When C. albicans 

cells enter the bloodstream, they first encounter macrophages and are engulfed by them. 

But in four to six hours C. albicans cells form hyphae, penetrate and kill the 

macrophages, and get out in the bloodstream again. In this series of events at the initial 

phase, right after engulfment, C. albicans up-regulates arginine biosynthesis. We found 

that arginine biosynthesis is critical for the fungus because it is metabolized and produces 

CO2 inside the cell, a signal important for the yeast to hypha switch. C. albicans mutants 

that either failed to make arginine (arginine auxotrophs) or could not metabolize arginine 

to CO2 (urea amidolyase mutants) were defective in making germ tubes inside the 

macrophages. However, wild type C. albicans and C. albicans auxotrophic for other 

amino acids than arginine can kill macrophages within four to six hours after 

phagocytosis. So, another project studied if macrophages can induce appropriate 

cytokines within that short time span before being killed by C. albicans. We found that 

after engulfing C. albicans, macrophages induce cytokines within one hour. Chief among 

them were IL-6, IL-23, and TGF-β, important for the development of the Th-17 subset of 

T cells. Finally, two major components of C. albicans, the quorum sensing molecule 

farnesol and the cell wall component zymosan, together induced TLR2, a pattern 

recognition receptor, and both were responsible for the induction of IL-6, IL-23, and 
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TGF-β. Farnesol was  ca. 100 times more effective than farnesoic acid at inducing these 

cytokines. Overall, this body of work has taken a major step towards elucidating 

farnesol‟s mode of action as a virulence factor and a lipid signaling molecule while at the 

same time highlighting the magnitude of the gaps remaining our knowledge.  
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Candida albicans is a polymorphic opportunistic pathogen that is a part of normal 

microbial flora of mouth, gastrointestinal and genitourinary tract, and to a lesser extent 

the skin, of most humans as a commensal. Patients with compromised immune systems 

such as those with AIDS, those undergoing cancer chemotherapy or organ and bone 

marrow transplants, those born prematurely, and those whose normal flora have been 

eliminated by antibiotics are all at high risk for a lethal infection called candidiasis. 

Etiologically candidiasis can be oropharyngeal/esophageal (OPC), genital/volvovaginal 

(VVC), or invasive candidiasis / candidemia. In the latter case the fungus C. albicans 

enters the blood causing bloodstream infection. Invasive candidiasis or candidemia is 

fourth most common cause of nosocomial bloodstream infections among hospitalized 

patients in the United States. A survey conducted at CDC reported incidence of 

candidemia is 8 cases per 100,000 in the general population. Higher incidences occur 

among neonates and African-Americans. There are number of drugs currently available 

for the treatment of candidiasis. Fluconazole or voriconazole (azole drugs) are the drugs 

of choice, but there are other drugs such as echinocandins (caspofungin), amphotericin B, 

which are used alone or in combination in cases of candidiasis. C. albicans becomes 

resistant to these drugs in case of repeated use. Development of new drugs and new 

targets therefore is imperative for successful control of the disease candidiasis.    

 The fungal pathogen C. albicans shows considerable plasticity in morphology. It 

can grow in yeast form or hyphal form or intermediate as pseudohyphae. Yeast cells are 

oval single cells and they divide by budding (axial or bipolar pattern), give rise to two 

asymmetrical mother and daughter cells. After START there is transition from G1 to S 

phase of cell cycle. Emergence of a bud is associated with replication of DNA and 
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spindle pole body duplication. After mitosis (M), yeast cells separate by cytokinesis, 

giving rise to a mother and a small daughter cell. Daughter cells enter the next cell cycle 

slightly after the mother when they reach the same cell size as their mothers. The budding 

mechanism of C. albicans yeast cells and is similar to S. cerevisiae (27). Like a true 

fungus C. albicans can also form germ tubes. Germ tube forms after induction of initial 

bud site selection, and extends to an elongated filament separated by septae (2). 

Pseudohyphae are an intermediate state but the mechanism of pseudohyphae formation 

more closely resembles budding. Pseudohyphae are elongated cells connected in chains 

that resemble hyphae, but individually similar to yeast. They basically have delayed 

isotropic growth after bud emergence and they divide as unipolar budding pattern (2, 27). 

In certain conditions C. albicans can also form chlamydospore, which is a distinct larger 

cellular form (42).  

Key virulence factors leading to mucosal or systemic candidiasis are: 

morphogenesis – yeast to hyphae switching; phenotypic switching, e.g. white – opaque 

switching; epithelial adhesion; production of extracellular enzymes, e.g. phospholipase B 

and aspartyl proteases; and  production of farnesol (33-35). Each and every factor is 

being studied to identify the mechanisms that are unique to C. albicans. The yeast to 

hypha switch has been very well studied (1, 4, 29, 46).  It is a carefully coordinated event 

which is regulated by multiple factors and several signal transduction pathways.  The 

environmental triggers for hyphal development include growth
 
at 37ºC, the presence of 

serum or N-acetylglucosamine (GlcNAc),
 
non-acid pH, high CO2, and nitrogen starvation 

(1, 4, 29, 46).  These environmental stimuli act by turning on one or more
 
signal 

transduction pathways that stimulate hyphal specific genes. These pathways include the 
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CPH1-mediated MAPK pathway and the EFG1-mediated cAMP dependent protein 

kinase A (PKA) pathway, which has two isoforms of PKA, Tpk1p and Tpk2p, with 

differential effects on hyphal morphogenesis.  Two other hyphal regulators, Rim101p and 

Czf1p, may function through Efg1p or act in parallel with Efg1p while another 

transcription factor TEC1 is regulated by either or both Efg1p and Cph1p.  The MAPK 

cascade includes Cst20p (MAPKKK), Hst7p (MAPKK), Cek1p (MAPK), and the 

downstream transcription factor Cph1p, which is a homolog of the S. cerevisiae 

transcription factor Ste12p.  C. albicans also has negative regulators of the hyphal 

transition.  Chief among these is Tup1p which acts in concert with Rfg1p, Nrg1p, or 

Rbf1p (1, 4, 29, 46).  The downstream targets of these environmental sensing pathways 

include the hyphal wall protein Hwp1p, adhesins (the ALS family), and extracellular 

hydrolytic enzymes (secreted aspartyl proteases, phospholipases) (1, 4, 29, 46). 

Nitrogen metabolism in C. albicans is complex and linked to the yeast – hypha 

morphological switch (3, 8, 44). Like most other microorganisms, C. albicans prefers 

some nitrogen sources over others. Ammonia and glutamine are preferred by C. albicans 

over other nitrogen sources such as proline, histidine, arginine, and urea (32). This 

phenomenon is called nitrogen catabolite repression (NCR) and has been demonstrated in 

numerous fungi (32). In response to activation of NCR genes, fungi initiate 

morphological changes, express virulence factors, or initiate sexual and asexual 

sporulation (32). For example the virulence of Aspergillus fumigatus, a pulmonary 

pathogen, is dependent on its ability to respond to limited nitrogen sources (14). 

Similarly, Cryptococcus neoformans haploid MATα cells switch from yeast to hyphae 

and develop fruiting bodies under limited nitrogen sources, and this phenomenon is 
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inhibited by ammonia (47). Another prime example of inhibition of NCR is induction of 

rice blast disease by Magniporthe grisea under poor nitrogen conditions (10). Diploid 

Saccharomyces cerevisiae also differentiate to pseudohyphae when grown on poor 

nitrogen sources. A mutation in SHR3, a gene required for amino acid uptake, also 

enhances the pseudohyphal phenotype in this organism (11). C. albicans grows as 

budding yeasts in the presence of ammonia as a nitrogen source but as hyphae when 

grown in the presence of poor nitrogen sources (3). When ammonia is absent, or present 

in only low concentrations, C. albicans cells express MEP1 and MEP2 genes which 

encode ammonium transporters. Mep2p, but not Mep1p, activates both the Cph1p-

dependent MAP kinase and the cAMP-dependent protein kinase A pathways, and thereby 

inducing morphogenesis in poor nitrogen conditions (3). MEP2 is under the control of 

two NCR positive regulators GLN3 and GAT1. GLN3 mutants do not form filaments in 

poor nitrogen sources (8). Addition of ammonium ions also represses proline uptake (16), 

peptide transporters (37), and inhibits expression of secreted aspartyl proteinases (20, 31, 

45).  

The mechanism for genetic regulation of NCR is well established in S. cerevisiae. 

When excess or preferred nitrogen sources are available, the cells activate Ure2p, which 

represses the positive regulators of NCR, GLN3 and GAT1, also known as GATA 

transcription factors. In the absence of excess or preferred nitrogen sources, and when the 

cells are grown in the presence of poor nitrogen sources, Ure2p is repressed activating the 

GATA factors GLN3 and GAT1. These GATA transcription factors then bind to the 

promoter regions of NCR sensitive GATA factor regulated genes and activate them (6). 

They bind to a conserved region containing a GAT(A/T)(A/G) motif, hence named 
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GATA factors. There are several NCR sensitive GATA factor regulated genes that serves 

different purpose in cell. This global control mechanism prevents expression of genes for 

utilization of secondary nitrogen sources as long as preferred nitrogen sources are already 

available. For example, in the presence of ammonia, most of the amino acid permeases 

are shut off, but in the presence of poor nitrogen sources the transporters of arginine, 

proline, urea, allantoin, GABA, are activated (6).  In Aspergillus nidulans over 100 genes 

are regulated by NCR and at least 30 genes are nitrogen regulated in case of S. cerevisiae 

(7, 38). Although we have general idea about nitrogen regulation in C. albicans, we do 

not have detailed molecular and genetic knowledge about the nitrogen regulation, 

specifically what genes are being regulated by NCR? Since nitrogen regulation is related 

to morphogenesis and thus to virulence, it is of enormous importance to understand the 

system in order to identify a novel mechanism and to develop new anti-fungal drugs.  

 The nitrogen starvation response by a cell is a distinctly different response than 

NCR. The NCR response is basically when the cells are shifted from a preferred nitrogen 

source to a non-preferred one or when the preferred nitrogen source is used up and the 

cells then shift to utilize non-preferred nitrogen sources. In contrast, when a cell is 

starved for a nitrogen source or a particular amino acid, the response is known as the 

general amino acid control (GAAC) response (15). Fig. 1-2 is taken from a review article 

by Hinnebush 2005 that shows GAAC in the yeast S. cerevisiae. In yeast S. cerevisiae, 

the transcriptional activator GCN4 mRNA is derepressed in amino acid deprived cells, 

and Gcn4p is responsible for activation of all genes responsible for amino acid 

biosynthesis. GCN4 translation is regulated by eIF2 (an initiation factor for protein 

synthesis), so when Gcn4p is derepressed the general rate of protein synthesis is also 
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reduced (15). This regulation is important for cells in order to limit their consumption of 

amino acids while activating machineries to synthesize amino acids under nitrogen 

starvation conditions. In case of yeast S. cerevisiae Gcn4p regulates more than 500 genes 

for that purpose via GCRE elements (15). Like S. cerevisiae, CaGCN4 also activates the 

transcription of amino acid biosynthetic genes. But C. albicans also induce the Ras-

cAMP pathway by GCN4 and thereby induce hyphal formation (44). Thus GCN4 in C. 

albicans acts as a global regulator of morphogenetic and metabolic responses to nitrogen 

starvation. In this thesis we report that during germ tube formation the kinetics of germ 

tube formation were faster when GCN4 was repressed and vice versa, confirming its role 

towards morphogenesis. Moreover we found under special conditions, such as when a C. 

albicans yeast cell is phagocytized by a macrophage, the cell exhibits NCR but not 

GAAC. In our study we found that the genes CAR1, and DUR1,2 are regulated by NCR. 

Arginine converts to urea by the enzyme Car1p and then urea degrades to ammonia and 

CO2 by the enzyme Dur1,2p. This conversion from arginine to CO2 is important for the 

yeast to hyphae switch inside a macrophage, an important factor for virulence. Similarly, 

our studies with gcn4/gcn4 strains, which were able to form hyphae inside macrophage, 

suggest that the arginine biosynthetic genes are not regulated by Gcn4p inside 

macrophage. During those conditions C. albicans cells specifically up-regulate arginine 

biosynthetic genes about 3-5 folds, with the exception of ARG2 (30). In C. albicans cells 

there are only 1 set of arginine biosynthetic genes. Thus, these arginine biosynthetic 

enzymes are regulated by some other mechanism in addition to the GAAC response, so 

that the C. albicans cells regulate arginine biosynthesis in more than one way.  
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Eight amino acids; phenylalanine, tryptophan, lysine, leucine, isoleucine, valine, 

methionine, and valine, are essential for humans because humans cannot synthesize them. 

Cysteine, tyrosine, histidine, and arginine are conditionally essential because they are 

additionally required by children but not adults. These amino acid requirements are 

generally met through diet. Because aromatic amino acids are not synthesized by humans, 

there are no human or mouse homologues of the aromatic amino acid biosynthetic genes 

that are present in S. cerevisiae (Saccharomyces Genome Database), C. albicans 

(Candida Genome Database) and other fungi (5). Thus it is likely that opportunistic 

fungal pathogens of humans like C. albicans have to synthesize these aromatic amino 

acids rather than acquire them from their hosts. In case of pathogenic S. cerevisiae, it has 

been reported that some nitrogenous compounds (polyamines, methionine, and lysine) 

can be acquired from the host, while others (aromatic amino acids, threonine, isoleucine, 

and valine) must be synthesized by the pathogen (26). This is consistent with the 

observation that a aro7 mutant that cannot synthesize aromatic amino acids is less 

virulent in mouse model (26). Thus it is important for the pathogen to regulate 

biosynthesis and metabolism of these amino acids. We have focused on the aromatic 

amino acid metabolism of C. albicans to understand how this pathway is being regulated. 

Our goal is to find a unique mechanism or target specific to this opportunistic fungal 

pathogen. We have examined the regulation of aromatic amino acids in cells grown under 

different physiological conditions, focusing on their genetic regulation and the role of 

NCR in the utilization of aromatic amino acids. The C. albicans like yeast S. cerevisiae 

utilizes the amino groups of aromatic amino acids but cannot use the carbon skeleton. 

Instead, they secrete these carbon skeleton as aromatic alcohols, otherwise known as 
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fusel alcohols or fusel oils, by a very common mechanism known as Ehrlich‟s pathway 

(13). By measuring the amount of aromatic alcohols secreted by the cells we evaluated 

the levels of aromatic amino acid metabolic genes.  

  Inoculum size effect is a very well studied phenomenon in that when ≥10
6
 cells 

are inoculated in a medium, C. albicans and other fungi such as Ceratocystis ulmi grow 

as yeasts whereas in case of inoculation of  <10
6
 cells they grow as mycelia (17). The 

inoculum size effect is not affected by the spore type, age, temperature, pH, oxygen 

availability, trace metals, sulfur or phosphorous sources, or the concentration of carbon or 

nitrogen (17). The growing cells excrete quorum sensing factors that cause morphological 

shifts from mycelia to budding yeast (17). For the C. albicans quorum sensing system, 

farnesol was identified as a quorum sensing molecule (QSM) that blocked the yeast to 

hyphae switch in C. albicans (18). This was the first eukaryotic QSM to be identified. 

Farnesol is secreted as a byproduct in the ergosterol biosynthetic pathway (19, 34, 36). 

Farnesyl pyrophosphate is converted to farnesol by two pyrophosphate phosphatases 

(DPP2 and DPP3) (19, 34, 36) and this scenario was confirmed by constructing a 

dpp3/dpp3 (KWN2) mutant and a dpp3::DPP3/dpp3::DPP3 (KWN4) revertant, that 

produced six times less and twice as much farnesol as their parent (BWP17) respectively 

(34). There have been significant efforts in finding the mode of action of farnesol as a 

quorum sensing molecule. Several groups have reported the effects of farnesol on several 

components of morphogenetic pathways. In cultures containing farnesol, hyphae-forming 

ability was restored by cAMP (9) and a strain with dominant active variant of Ras1p 

grew as hyphae that could not be blocked by farnesol (9). Both of these observation 

suggest that Ras1-cAMP-Efg1 signaling cascade is inhibited by farnesol (9).  Another 
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report suggests that farnesol causes small but consistent increase in both TUP1 mRNA 

and Tup1p protein levels, which serve as negative regulators of hyphal morphogenesis 

when acting in conjunction with RFG1, NRG1, and RBF1 (25). Farnesol has also been 

reported to phosphorylate Hog1p, suggesting a possible interaction between farnesol and 

osmotic and oxidative stress (41). In the literature farnesol is also reported to act by 

blocking the MAP kinase cascade (40). CPH1 and HST7 mRNA, components of the 

MAP kinase cascade, were decreased in cells treated with farnesol (40). Also, farnesol 

was not able to block germ tube formation of chk1/chk1 (CHK21), suggesting that 

farnesol might act via a two component signal transduction pathway (28). Our study 

showed that farnesol competes with amino acid induced germ tube formation. In our 

germ tube assay, when Gcn4p is derepressed, thus slowing down the general rate of 

protein synthesis, we also see slower germ tube kinetics. In contrast, in the presence of 

added amino acids, Gcn4p is repressed and GATA transcription factor genes will be 

activated resulting in inhibition of NCR leading to faster germ tube formation. In our N-

acetyl glucosamine (GlcNAc) induced germ tube assay at 37 ºC, 5 µM farnesol was 

sufficient to block the yeast to hyphae switch. But, in the presence of added amino acid 

germ tube assay, 20 µM farnesol was not sufficient to block hyphal morphogenesis. 

Moreover, if the amino acids were added after 30 minutes then 20 µM farnesol could 

block hyphae formation, suggesting that farnesol might also play a role in NCR induced 

hyphal morphogenesis. Based on these data taken together, it is tempting to hypothesize 

that farnesol acts far upstream and thus affects most of these signal transaction pathways 

important for morphogenesis.  
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C. albicans strains that are locked in either the yeast or hyphae morphology are 

less virulent (30). This fact led us to think that if farnesol can block the mycelia form of 

growth then it could be used as a therapy for candidiasis, either by itself or in 

combination with other drugs. However, several mouse studies revealed that farnesol acts 

as a virulence factor in vivo. When C. albicans cells were pre-treated with fluconazole, 

they secreted more farnesol and were more virulent than untreated C. albicans cells (33). 

Similarly the strain lacking DPP3, which produced 7-fold  less farnesol was 4-5 fold less 

virulent in a mouse model of disseminated candidiasis (34). Mice treated with farnesol 

also inhibited Th1 cytokines such as IFN-γ and IL-12, and enhanced Th2 cytokines such 

as IL-5 (35). Taken together, even though farnesol blocks the yeast to hyphal switch of C. 

albicans in vitro, it acts as a virulence factor in the mouse model of systemic candidiasis. 

So there is an urgent need of understanding the mode of action of farnesol in C. albicans 

as well as its broader effects in candidiasis. 

 The main reservoir of the opportunistic pathogen C. albicans is the mammalian 

body where the fungus normally resides as commensal. In compromised immune 

conditions C. albicans can cause superficial to deep rooted infection candidiasis. In some 

cases C. albicans can also reach bloodstream and cause disseminated candidiasis which is 

fatal to immune-compromised patients. Once C. albicans cells reach the bloodstream, 

they interact with the components of immune system. So it is critical to understand how 

different components of immunity interact with the pathogen C. albicans. Interaction of 

different innate and adaptive immune components with C. albicans is a major topic of 

current research. When the C. albicans reaches blood stream, the cells interact initially 

with innate components such as macrophages, neutrophils, dendritic cells, and natural 
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killer cells. These innate immune components try to control the infection while inducing 

several cytokines and chemokines for induction of proper adaptive immune components. 

Many groups have studied the interaction of C. albicans with immune components. 

Macrophages are among the first innate immune components that phagocytize C. 

albicans. Within six hours of being engulfed by the macrophages, C. albicans shifts its 

metabolism from glycolysis to gluconeogenesis, down-regulates translation, switches 

from yeast to hyphae, pierces the phagolysosome, and comes out of macrophage by 

killing it (30). Prominent among the early responses is up-regulation of all the arginine 

biosynthetic genes except ARG2 (30). This type of response probably was not because of 

nitrogen starvation, because only the arginine biosynthetic genes were dramatically up-

regulated. As previously explained, in case of GAAC all the amino acid biosynthetic 

genes would be up-regulated. In the fourth part of this thesis we describe how C. albicans 

can utilize arginine and induce hyphal morphogenesis that is critical for their escape from 

macrophages. There are evidences that this arginine utilization pathway is also regulated 

by GATA factors important for NCR. C. albicans also induce arginine and methionine 

biosynthetic genes, resembling amino acid deprivation response, while interacting with 

neutrophils (39). Neutrophils use reactive oxygen species (ROS) and reaction nitrogen 

species (RNS) to kill a pathogen in a much more effective way than macrophages.  

 After coming into contact with the pathogenic fungus C. albicans, macrophages 

go through a series of coordinated events, induce several signal transduction pathways to 

contain the infection. Macrophages, like other innate immune components, express Toll-

like receptors (TLRs), which can recognize pathogen associated molecular patterns 

(PAMPs) (21, 22). Beta-glucan (12), phospholipomannan (24), alpha-mannan (43), and 
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beta 1,2 mannoside (23) are the components of fungal cell wall that serve as PAMPs and 

are recognized by TLR2 (12), TLR4 (43), dectin-1 (12), and galectin-3 (23), either alone 

or in association. After being recognized by the receptors at the surface of the 

macrophage, the fungal pathogen C. albicans cells are internalized and phagosome is 

formed, while many other signal transduction events occur in the macrophage cells. 

These series of events cause the production of a set of cytokines that are specific for the 

fungus. In this thesis we report which cytokines are made that are specific for C. 

albicans. Although we found that macrophages die within four to six hours after 

phagocytosis of C. albicans, that time frame is still sufficient for cytokine induction. The 

cytokines reported in chapter 5 are important for the induction of T cells. In this thesis we 

report C. albicans; specifically beta-glucan and secreted quorum sensing molecule 

farnesol, together synergistically activate TLR2 thereby induce several cytokines. These 

cytokines are effective in stimulating the differentiation of CD4+ T cells to T helper cells. 

In this thesis we report that, in addition to Th1 and Th2 cells, the macrophage induced 

cytokines are also effective in induction of Th17, a critical event in prevention of 

candidiasis. In immune-compromised patients such as AIDS patients the T cell counts is 

severely compromised. So it will be extremely valuable to develop therapies to enhance 

the appropriate T cell response for effective immunity to C. albicans.    
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Figure legends 

Figure 1-1. Model for Nitrogen Catabolite Repression (NCR)  

A. NCR. Closed and open boxes designate the presence and absence of transport gene 

expression. Compounds surrounding the yeast cells are all poor nitrogen sources. Taken 

from (6). 

B. Model of reciprocal regulation of GATA factor gene expression and GATA factor 

regulation of NCR-sensitive gene expression per se. Arrowheads and bars designate 

positive and negative regulation, respectively. Dashed areas designate weak regulation. 

Taken from (6). 

Figure 1-2.  Summary of the major control mechanisms regulating Gcn4p levels in 

the cell and transcription of target genes subject to GAAC. Signals and factors 

controlling GCN4 at the level of translation (black), mRNA abundance (purple), or 

protein degradation (green) are color-coded as is the induction of GAAC target genes and 

its consequences (blue). Taken from (15). 
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CHAPTER 2 

Regulation of aromatic alcohol production in Candida albicans  
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Abstract 

Colonization by the fungal pathogen Candida albicans varies significantly dependent 

upon the pH and availability of oxygen.  Because of our interest in extracellular 

molecules as potential quorum sensing molecules, we examined the physiological 

conditions which regulate the production of the aromatic alcohols, i.e. phenethyl alcohol, 

tyrosol, and tryptophol.  The production of these fusel oils has been well studied in 

Saccharomyces cerevisiae.  Our data shows that aromatic alcohol yields for C. albicans 

are determined by growth conditions.  These conditions include the availability of 

aromatic amino acids, pH, oxygen levels, and ammonium salts.  For example, tyrosol 

production in wild type C. albicans varied 16-fold merely by including tyrosine or 

ammonium salts in the growth medium.  Aromatic alcohol production also depends on 

the transcription regulator Aro80p.  Our results are consistent with aromatic alcohol 

production via the fusel oil pathway: aromatic transaminases (ARO8 and ARO9), 

aromatic decarboxylase (ARO10), and alcohol dehydrogenase (ADH).  Expression of 

ARO8, ARO9 and ARO10 is also pH dependent. ARO8 and ARO9 were alkaline up 

regulated while ARO10 was alkaline down regulated.  The alkaline dependent change in 

expression of ARO8 was Rim101-independent while expression of ARO9 was Rim101-

dependent.  

 

Short Title: Fusel Oils in Candida albicans 

 

Key words: tyrosol, tryptophol, phenethyl alcohol, Aro80p, RIM101 pathway,  
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Introduction 

The dimorphic fungal pathogen Candida albicans grows and colonizes different 

niches of human hosts (41), which differ significantly both physically and chemically.  

The pH of the oral cavity varies according to diet, the metabolism of other microflora, 

and salivary flow.  Stomach pH is less than 3 while the duodenum is pH 5 and the large 

intestine is pH 7.7 (4).  Blood is around pH 7.4. C. albicans can thrive in all these varying 

pH conditions. Similarly C. albicans can adapt to aerobic, anaerobic, or hypoxic 

microenvironments as is evident from its ability to exist in the anaerobic gastrointestinal 

tract (14, 15) and still cause infections ranging from superficial skin infections to deep-

seated generalized infections where multiple internal tissues and host cells are invaded 

and colonized.  The interiors of biofilms also may be partially anaerobic environment 

(31).  The ability to adapt in all these different conditions is one of the most important 

attributes of severe fungal pathogens.  Our long-standing interest is in extracellular 

molecules produced by C. albicans (31).  Does their production differ under these 

different growth conditions and do they have a role in cellular adaptations from one 

condition to another? 

It has been well established that Saccharomyces cerevisiae secretes fusel oils, a 

name derived from the old German word fousel meaning bad spirit (40).  The 

components of fusel oils and the mechanism of formation of these higher alcohols from 

amino acids have been well characterized in S. cerevisiae (18, 34, 40).  Fusel oil 

formation from amino acids proceeds through the Ehrlich pathway, which was first 

proposed 100 years ago (16, 30).  This pathway consists of three enzymatic steps: 

transamination to form an α-keto acid which would then be decarboxylated to an 
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aldehyde and reduced to the fusel alcohol (Fig. 1-1).  This pathway has been confirmed 

by more recent work (34, 39) including elegant studies using 
13

C-labeled amino acids and 

13
C NMR spectroscopy (13, 18).  Ehrlich also showed that addition of ammonium salts 

and asparagine inhibited the formation of fusel oils (16, 40) and that yeasts produced 

tyrosol (p-hydroxy-phenyl ethanol) if tyrosine was added to the fermenting mixture and 

tryptophol if tryptophan was added (16, 40).  S. cerevisiae can use tryptophan, 

phenylalanine, or tyrosine as the only source of cellular nitrogen (8) with the main 

products of their catabolism being tryptophol, phenethyl alcohol, and tyrosol, 

respectively (22, 27, 34, 36).  

The present paper examines aromatic alcohol production in C. albicans and finds 

that the production characteristics fit those expected of fusel oils.  That is, aromatic 

alcohol production uses homologous genes and enzymes as in S. cerevisiae, is dependent 

on the availability of amino acid precursors, and is regulated by pH, oxygen availability, 

and nitrogen repression by ammonium.  For instance, tyrosol production per g dry wt of 

cells varied over 16-fold for wild type cells.  Studies with null mutants revealed that 

transaminases and decarboxylase are under dual control of the Aro80p and pH pathways.  

ARO8 and ARO9 (transaminases) were alkaline up regulated while ARO10 

(decarboxylase) was alkaline down regulated.  ARO8 was Rim 101p independent while 

ARO9 was Rim101p dependent. 

Methods 

Strains and growth media 

The C. albicans strains SC5314, CAI4 (ura3::imm434/ura3::imm434), and BWP17 

(ura3::imm434/ura3::imm434, arg4::hisG/arg4::hisG, his1::hisG/his1::hisG) (42) 
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were obtained from Alexander Johnson, University of California at San Francisco.  The 

aro80 (orf19.3012) and rim13 (orf19.3995) insertion mutants were obtained from Dr. 

Aaron Mitchell‟s collection (32); they were derived from strain BWP17.  CAR2 

(rim101::hisG/rim101::hisG-URA3-hisG ura3::imm434/ura3::imm434) (33) was obtained 

from Dr. Fritz A. Muhlschlegel, Canterbury, UK. 

For routine growth of strains, YPD medium (10 g of yeast extract per liter, 20 g of 

peptone per liter, 20 g of glucose per liter) was used.  To quantify aromatic alcohols in 

culture supernatants, GPP, GPA, or GPP+A media (23) were used.  GPP medium 

contains the following (per 900 ml of distilled water): 4.0 g of KH2PO4, 3.2 g of 

Na2HPO4, 1.2 g of L-proline, and 0.7 g of MgSO4·7H2O.  After the medium was 

autoclaved, 100 ml of 20% (wt/vol) glucose, 1 ml of a vitamin mix, and 0.25 ml of a 

mineral mix were added.  The vitamin mix contains the following (per 100 ml of 20% 

ethanol): 2 mg of biotin, 20 mg of thiamine-HCl, and 20 mg of pyridoxine-HCl.  The 

mineral mix contains the following (per 100 ml of 0.1 N HCl): 0.5 g of CuSO4 · 5H2O, 

0.5 g of ZnSO4 · 7H2O, 0.8 g of MnCl2 · 4H2O, and 0.5 g of FeSO4.  The vitamin mix and 

the mineral mix were filter sterilized through 0.2-µm-pore-size Whatman (Maidstone, 

United Kingdom) cellulose nitrate filters and stored at 4°C.  For GPA ammonium 

sulphate (10mM) replaced proline and for GPP+A ammonium sulphate was added to 

GPP.  Anaerobic growth employed the Hungate technique for growing stringent 

anaerobes as adapted for C. albicans by Dumitru et al (14).  Thus, our regular GPP 

medium (50ml) was supplemented with 200 μl of 1 mM oleic acid in 100% methanol, 

200 μl of 4 mM nicotinic acid, and 1 ml of 500mM NH4Cl (14).  The cells were 

harvested after 5 days at 30°C. 
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Quantification of Excreted Aromatic Alcohols 

C. albicans strains were cultured for 24 – 28 hours in 50 ml of defined medium 

(GPP, pH6.8) while shaking at 250 rpm. Cells were grown at 30 or 37ºC as specified. 

When necessary, pH values were adjusted using 1N HCl or 1N NaOH.  After growth the 

fungal cultures were harvested by centrifugation at 6,000 rpm for 10 min.  The 

supernatants were filtered through 0.2 Millipore filters, extracted with ethyl acetate, 

filtered, and concentrated by rotary evaporation to 50 l.  Then 1 l of sample was 

injected into a HP6890 GC/MS with 50 m Capillary column HP 19091B-005.  The flow 

rate was 1.0 ml/min. GC used an inlet temperature of 280°C and temperature program of 

80°C for 2 min, then 60°C/min until 160°C and holding for 2 minutes and then 10°C/min 

until 300°C, and holding for 5 minutes with total run time 24.33 minutes.  MS used a 5-

min solvent delay.  Ethyl acetate extraction is suitable for the three aromatic alcohols as 

well as farnesol, whereas hexane or 1:4 ethylacetate/hexane is suitable for farnesol (20) 

but not for the aromatic alcohols.  The phenethyl alcohol was purchased from Aldrich 

Chemical Co., Milwaukee, WI; tyrosol from Avocado Research Chemicals Ltd., 

Heysham, UK; and tryptophol from TCI-EP, Tokyo. 

Northern Analysis 

C. albicans total RNA used for mRNA accumulation was extracted by the hot phenol 

extraction method using yeast cells harvested at mid-log phase (24).  Equal amounts of 

RNA (15 g) were resolved on 1.0% agarose–formaldehyde gels and transferred to 

GeneScreen Plus membranes (NEN Life Science Products, Boston, MA).  The 

NorthernMax complete Northern blotting kit (Ambion, Austin, TX) was used for transfer 

and hybridization.  The DNA templates for probe synthesis were prepared using PCR 
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with C. albicans SC5314 genomic DNA and the following primers (5‟ to 3‟):  ARO8 – 

TATTCCAACACCGTCGTTCA and ACAAACTGGTCCAAGGCATC, ARO9 – 

CAAAACTCCGCCTTCCAGTA and AGCCATCCATCAACACCTTT, ARO10 – 

GTGCTTATGCTGCTGATGGA and TCTTTTTGGGTTCTGCTGCTG, RIM101 – 

AGTCCATGTCCCATTGAAGC and ACACCGCCAAACTCTAATGC, ACT1 – 

AGTTATCGATAACGGTTCTG and AGATTTCCAGAATTTCACTC.  The DNA 

templates were used to synthesize DNA probes labeled with 
32

P using an oligolabeling kit 

(Rad Prime DNA labeling system; Invitrogen Life Technologies, Carlsbad, CA), as 

described by Atkin et al. (3).  Northern blots were PhosphorImaged using a Storm 

Phosphorimager (Amersham Pharmacia Biotech) and measurements of ARO8, ARO9, 

ARO10, RIM101 mRNA were normalized with ACT1 mRNA control.  

 

Results 

Environmental control of aromatic alcohol production by C. albicans.  The aromatic 

alcohol yields for S. cerevisiae vary by growth conditions (18).  The rationale for the 

environmental variables tested here was to see if the control mechanisms operative in C. 

albicans paralleled those known for fusel oil production in S. cerevisiae (21).    

Temperature, anaerobiosis, precursor availability, ammonium ions, and pH were 

examined.  In each case, supernatants from C. albicans SC5314 grown in GPP were 

analyzed for the three aromatic alcohols, phenethyl alcohol, tyrosol, and tryptophol (Fig. 

2-2).  Peaks were identified by comparing their retention times and MS spectra versus 

those of the pure compounds (Fig. 2-2 C-F).   
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Aromatic alcohol production was not affected by growth temperature.  With regard 

to temperature, there was little difference in aromatic alcohol production between 30°C 

(Fig. 2-2 A) and 37°C (Fig. 2-2 B).  The concentrations of phenethyl alcohol, tyrosol, and 

tryptophol were 830, 2120, and 440 μg/g at 30°C and 1030, 2530, and 660 μg/g at 37°C, 

respectively (Fig. 2-3 A).  For comparison, farnesol was present at 17 and 20 μg/g at 

30°C and 37°C, respectively (Fig. 2-2 A-B).  The identities of the other peaks in Fig. 2-2 

remain unknown.  Their mass values do not correspond with those expected for any of 

the other fusel oils.   

Increased aromatic alcohols are produced anaerobically.  Another of the 

environmental variables examined was anaerobiosis.  Anaerobic growth conditions (14) 

should be relevant for C. albicans growing in animal gastrointestinal tracts (15) and 

biofilms (31).  Alem et al (1) recently reported that C. albicans biofilms produced 1.5-

fold more tyrosol than did the corresponding planktonic cells.  We found that cells of C. 

albicans grown anaerobically at 30˚C produced roughly twice as much of each of the 

three aromatic alcohols as did aerobically grown cells (Fig. 2-3 B).   

Aromatic amino acid precursors elevate aromatic alcohol production.  We examined 

aromatic alcohol production by cells grown at 37˚C in GPP supplemented with the 

aromatic amino acids phenylalanine, tyrosine, or tryptophan which are precursors for 

aromatic alcohol production (Fig. 2-3 C).  In each case, the expected alcohol increased in 

abundance.  At 37˚C tyrosol production was increased 2-fold in the presence of tyrosine, 

and tryptophol production was increased 2.5-fold in the presence of tryptophan (Fig. 2-3 

C).  No significant further changes in tyrosol levels were observed as tyrosine was 
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increased from 50 to 150 g/ml (Fig. 2-3 C).  Throughout, the cell morphologies 

remained unchanged by the amino acid additions; the cells were 90-95% hyphal.   

Ammonia suppresses aromatic alcohol production.  Another environmental variable 

expected to influence fusel oils is the ammonia effect (6, 21), whereby aromatic alcohol 

production is inhibited by ammonia.  C. albicans SC5314 produced 5-7-times less 

aromatic alcohols when grown at 30ºC in GPA than when grown in GPP (Fig. 2-3 D).  

The two media differ only in whether ammonium sulfate or L-proline (both at 10 mM) is 

the nitrogen source.  Aromatic alcohol production was also 5 to 7-fold lower when the 

cells were grown in L-proline and ammonium sulfate together (Fig. 2-3 D), showing that 

the ammonia effect is operative even in the presence of proline.  In the upstream regions 

for C. albicans ARO8-10 we found several GAT (A/T) (A/G) sequences, putative binding 

sites for the GATA transcription factors Gln3p and Gat1p (9, 25). These conserved 

regulators mediate nitrogen catabolite repression by activating genes whose products are 

required for nitrogen catabolism. 

Decreased production of aromatic alcohols by an aro80 mutant.  By analogy with 

aromatic alcohol production in S. cerevisiae (21), aromatic alcohol production in C. 

albicans is expected to depend on Aro80p.  S. cerevisiae Aro80p is a member of the 

Zn2Cys6 transcription activator family which increases synthesis of Aro9p (aromatic 

transaminase) and Aro10p (aromatic decarboxylase).  Aro80p is activated by three 

aromatic amino acids (21).  The C. albicans Aro80p is 32% identical with its S. 

cerevisiae homolog.  Importantly, however, the conservation is much higher (67% 

identical) at the N-terminus that contains the zinc binuclear DNA binding domain (Fig. 2-

4 A).  Thus, both the S. cerevisiae and C. albicans Aro80p are bimetal thiolate cluster 
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proteins/transcription regulators (28, 38) and they probably recognize the same or similar 

sequences.  Aro80p is a transcription activator of ARO8, 9, and 10 in S. cerevisiae (21) 

and by analogy it may be in C. albicans also.  We also chose the ARO8, 9, and 10 genes 

for study because ARO9 was consistently up regulated when S. cerevisiae was grown in a 

glucose-limited chemostat with phenylalanine as the sole nitrogen source (5) while 

ARO10 was the only decarboxylase gene whose transcript profile correlated strongly with 

α-ketoacid decarboxylase activity in chemostat culture (5, 18, 39). 

When grown in GPP medium, C. albicans aro80 produced ca. 3.5 times less 

phenethyl alcohol, 4.5 times less tyrosol, and 2.5 times less tryptophol than did the wild 

type SC5314 and ca. 5 times less phenethyl alcohol, 2.5 times less tyrosol, and 3.5 times 

less tryptophol than did the parent BWP17 (Fig. 2-4 B).  In the presence of ammonia 

(GPA instead of GPP), the aro80 production levels for phenethyl alcohol, tyrosol, and 

tryptophol were reduced a further 1.2, 4, and 20-fold, respectively (Fig. 2-4 B).  The fact 

that the ammonia effect is still observed in aro80 suggests that the ammonia effect on the 

ARO8 and ARO9 (transaminases) and AR010 (decarboxylase) genes and/or proteins (Fig. 

2-1) is independent of aro80.  These findings are consistent with the conclusion that 

aromatic amino acid metabolism in C. albicans, like S. cerevisiae (21), is both stimulated 

by transcription activation by Aro80p and subject to nitrogen catabolite repression by 

ammonia.  

Alkaline pH elevates aromatic alcohol yield.  The final environmental variable we 

explored was pH.  C. albicans grows over a pH range from ca. 1.5 to 10 and culture pH is 

strongly influenced by the nitrogen source.  For both C. albicans and Ceratocystis ulmi 

(23), the pH remains constant at ca. 6.5 throughout growth in both proline and arginine-
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containing media.  Indeed, GPP and GPR were designed to study fungal dimorphism 

without concurrent changes in pH (23).  In contrast, with ammonium salts as the nitrogen 

source, the pH drops to 2-3 with (NH4) 2 SO4 or NH4Cl, but remains at pH 6.5 with 

ammonium tartrate (23).  Many bacteria respond to pH extremes by synthesizing amino 

acid decarboxylases at low external pH and amino acid deaminases at high external pH 

(17).  C. albicans may have similar mechanisms.  In unbuffered medium 199 (a 

glutamine-containing medium), cultures that started at pH values ranging from 4 to 10 

returned to pH 7 within 6 hrs (M.C. Lorenz, personal communication).  Accordingly, 

production of the aromatic alcohols by wild type cells was examined in highly buffered 

cultures grown in GPP at pH 3, 7, or 8, so that pH 3 constitutes acid stress and pH 7 and 8 

constitute more alkaline conditions (11).  Production of the three aromatic alcohols by 

SC5314 was 2-3 fold higher for cells grown at pH 7 (Fig. 2-5 A) or pH 8 (data not 

shown) than by cells grown under acid stress (Fig. 2-5 A).  Northern blots for these cells 

showed that ARO8 and ARO9 were alkaline up regulated while ARO10 was alkaline 

down regulated (Fig. 2-5 B, lanes 1 and 2). 

Rim101p is required for maximal aromatic alcohol production.  Alkaline pH 

responses can be either Rim101p dependent or independent (11).  For the Rim101-

dependent alkaline response, Rim101p needs to be proteolytically cleaved to its active 

form by Rim13p (Fig. 2-1), a calpain protease (10).  Then Rim101p activates 

transcription of a variety of genes including PHR1 and PRA1, as well as its own gene 

RIM101.  Thus, in the absence of RIM13, Rim101p would remain inactive and genes 

such as PHR1 and PRA1 would not be expressed at alkaline pH (11).   
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The rim13 and rim101 mutant cells grew as yeasts in GPP at 37°C at pH values 

from 3 to 8, thus confirming that the RIM101 pathway is required for alkaline-induced 

filamentation (4).  However, the absence of filamentation was not due to growth defects.  

The rim13 and rim101 dry weights after 24 hrs were very close to those for wild type 

cells and in the GlcNAc-induced filamentation assay (20), histidine supplemented rim13 

and uridine supplemented rim101 produced germ tubes just like wild type cells (data not 

shown).  Thus, RIM101 is not essential for filamentation, other pathways are available for 

hypha formation.   

With wild type SC5314, the aromatic alcohol yields in vitro were elevated at pH 7 

compared to pH 3 (Fig. 2-5 A) and thus we wanted to see if this pH effect was Rim101p 

dependent or not.  We tested aromatic alcohol production of rim13 and rim101 at pH 3 

and pH 7 (Fig. 2-5 A) and then compared these values with their parents BWP17 and 

CAI4, respectively, as well as with the wild type SC5314 (Fig. 2-5 A).  The observation 

that two independent mutants in the RIM101 pathway, i.e. rim13 and rim101, both curtail 

fusel alcohol synthesis implicates this pathway in their synthesis.  

For the wild type SC5314 and the two parental strains, BWP17 and CAI4, the 

aromatic alcohol yields in vitro were pH dependent, being at least 2.0 fold higher at pH 7 

than pH 3.  In contrast, pH regulation was lost for rim13 (Fig. 2-5 A).  Two independent 

rim13 mutants were tested and they behaved similarly. Although the rim13 and rim101 

mutants produced less aromatic alcohols, the pH regulation was not completely lost for 

rim101 (Fig. 2-5 A). As a control, farnesol production by rim13 and rim101 were similar 

to the wild type SC5314 and their parents BWP17 and CAI4 at both pH values (data not 

shown).  
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 We further tested C. albicans with regard to whether the genes for aromatic 

alcohol production were pH regulated and, if so, whether the pH effects observed were 

Rim101p - dependent or - independent.  This latter distinction was made using rim13 and 

rim101 mutants; rim13 is the mutant in which Rim101p cannot be activated.  For wild 

type SC5314, ARO8 and ARO9 were alkaline up regulated while ARO10 was alkaline 

down regulated (Fig. 2-5 B, lanes 1 and 2). This pattern was also seen for BWP17 (Fig. 

2-5 B, lanes 3 and 4). ARO9 was regulated in a RIM101p dependent manner because its 

alkaline up regulation was lost in both rim13 (lanes 5 and 6) and rim101 (lanes 7 and 8). 

In contrast, ARO8 was regulated in a Rim101p independent manner because it was still 

alkaline regulated in both rim13 and rim101 (Fig. 2-5 B, lanes 5-8).  The situation with 

ARO10 is more complicated in that its alkaline down regulation was lost in rim101 (lanes 

7 and 8) but not in rim13 (lanes 5 and 6). These findings reinforce the microarray data of 

Bensen et al (4) who found that ARO8 was alkaline up regulated and ARO10 was alkaline 

down regulated. Alkaline induction of RIM101 can also be seen in Fig. 2-5 B (lanes 1-2).   

 

Discussion 

Fusel alcohols are the natural products of amino acid catabolism. Yeasts cannot 

use branched chain or aromatic amino acids as their sole carbon source (8).  However, 

they can be used as nitrogen sources under otherwise nitrogen limiting conditions, with 

the consequent production of fusel alcohols as potentially toxic or regulatory by-products 

(2, 19).  Our studies on aromatic alcohol production showed that C. albicans produced 

three aromatic alcohols, phenethyl alcohol, tyrosol, and tryptophol, using a similar 

pathway as in S. cerevisiae, i.e. transamination (ARO8, ARO9), decarboxylation 
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(ARO10), and then reduction by alcohol dehydrogenase (ADH) (18, 34).  This pathway is 

summarized in Fig. 2-1.  We found that C. albicans produced the three expected aromatic 

alcohols in roughly constant proportions under all conditions studied.  Previously, 

Lingappa et al (26) reported production of phenethyl alcohol and tryptophol whereas 

Chen et al (7) detected tyrosol and Martins et al (29) detected phenethyl alcohol and 

isoamyl alcohol.  Isoamyl alcohol is the fusel alcohol derived from leucine (18). 

Aromatic alcohol production was dependent on the transcription factor Aro80p.  It 

was repressed by ammonium ions but elevated under anaerobic conditions or whenever 

the appropriate amino acids, phenylalanine, tyrosine, or tryptophan, were provided in the 

growth medium.  Aromatic alcohol production was determined by growth conditions.  

For example, for wild type C. albicans tyrosol production varied 16-fold merely by 

including tyrosine (Fig. 2-3 C) or ammonium ions (Fig. 2-3 D) in the growth medium.  

Also, we found that cells of C. albicans grown anaerobically at 30˚C produced roughly 

twice as much of each of the three aromatic alcohols as did aerobically grown cells (Fig. 

2-3 B).  This increased production occurred despite the fact that our anaerobic growth 

medium is a modified GPP containing 10 mM ammonium salts (14).  C. albicans up 

regulates three alcohol dehydrogenase genes (ADH1, ADH2, and ADH5) during hypoxic 

growth (35), a finding which is consistent with the fact that higher amounts of aromatic 

alcohols are secreted under anaerobic conditions (Fig. 2-3 B).  Aromatic alcohol 

production would be energetically favorable under anaerobic conditions.  The aromatic 

aldehydes would be electron acceptors and substrates for one or more of the alcohol 

dehydrogenases (Fig. 2-1).  Higher aromatic alcohol production under anaerobic 

conditions would also explain the observation of Alem et al (1) that on a per weight basis 
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biofilm cells secreted 50% more tyrosol than did planktonic cells.  This 50% increase 

would be expected if 30-40% of the biofilm cells were growing in anaerobic conditions. 

Because aromatic alcohols are formed from aromatic amino acids by a pathway 

which includes decarboxylation, we also considered whether their production was part of 

a pH response by C. albicans.  All microbes have an optimal pH for growth and many 

use pH-regulated genes to bring external pH close to this optimal range (37).  These 

studies were pioneered by Ernest Gale and Helen Epps (17) who showed that in an amino 

acid or protein rich environment many bacteria made amino acid decarboxylases at low 

external pHs and amino acid deaminases at high external pHs, in each case acting to 

neutralize the pH of the growth medium.  C. albicans is also capable of neutralizing 

unbuffered growth media.  However, compensating for pH extremes is clearly not the 

dominant reason for aromatic alcohol production by C. albicans.  Aromatic alcohol 

production was actually reduced during growth at low pH (Fig. 2-5 A) and the 

transaminase and decarboxylase genes were regulated in an opposite manner by pH (Fig. 

2-5 B).  ARO8 and ARO9 were alkaline up regulated whereas ARO10 was alkaline down 

regulated.  This pH regulation in opposite directions is consistent with aromatic alcohol 

production being maximal at pH 7 (Fig. 2-5 A).   

Finally, aromatic alcohol production was insensitive to pH in the rim13 mutant 

(Fig. 2-5 A) and the pH dependent up regulation of ARO9 was lost in both rim13 and 

rim101 (Fig. 2-5 B). Thus we suggest that ARO9 should be added to the list of Rim101p 

regulated genes. Dual regulation of ARO9 by Aro80p and Rim101p suggests that Aro9p 

is a critical step for the regulation of fusel oils, a reasonable possibility because the 

following decarboxylation step is effectively irreversible (12, 18, 34). For ARO10, 
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regulation was lost in rim101 but not in rim13 (Fig. 2-5 B). This juxtaposition could 

mean that ARO10 expression is dependent on Rim101p but not on the activation / 

processing of that protein by Rim13p.   
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Figure legends 

Figure 2-1.  Regulation of the production of aromatic alcohols from aromatic amino 

acids. 

C. albicans can use the aromatic amino acids tryptophan, phenylalanine and tyrosine as 

cellular nitrogen sources.  This results in the production of tryptophol, phenylethanol and 

tyrosol, collectively known as fusel oils.  Fusel oil production depends on environmental 

factors including the availability of aromatic amino acids, ammonia, oxygen level, and 

alkaline pH (indicated by dotted lines). Aromatic amino acids stimulate Aro80p, a 

transcription activator required for full expression of ARO8 and ARO9 (encoding 

aromatic transaminases) and ARO10 (aromatic decarboxylase). Genes are in boxes; 

enzymes/proteins are in ellipses. The scheme is based on our findings, as well as on 

pathways reported for both S. cerevisiae (6, 13, 16, 21) and C. albicans (10, 11, 33). 

 

Figure 2-2.  GC/MS analysis of ethyl acetate extracts from cell free supernatants of 

C. albicans 

Cells were grown overnight at (a) 30˚C or (b) 37˚C prior to GC/MS analysis.  The GC 

peaks labeled I, II, III, and IV were identified by MS as (c) phenethyl alcohol, (d) tyrosol, 

(e) tryptophol, and (f) farnesol, respectively. 

 

Figure 2-3.  Effects of environmental conditions on production of aromatic alcohols. 

GC/MS analysis of cell free supernatants of C. albicans: (a) 30C and 37C (from Fig. 2a 

and b, respectively); (b) grown at 30ºC aerobically or anaerobically; (c) defined GPP 

medium (37°C) supplemented with the indicated amino acid(s), at 50μg/ml unless 
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otherwise indicated; (d) with proline (GPP) or ammonia (GPA) or both (GPP+A) as the 

nitrogen source.  Throughout, phenethyl alcohol (PEA, white bars), tyrosol (TOH, black 

bars), and tryptophol (TrpOH, patterned bars) are expressed as μg per g dry weight of 

fungal cells.  Data for b and d (all at 30°C and pH7) are the average of triplicate 

experiments, with bars representing standard error, whereas a and c are the average of 

two experiments which agreed within + 10%.   

 

Figure 2-4.  Effects of Aro80p on production of aromatic alcohols. 

(a) Comparison of the N-terminal portions of Aro80p from C. albicans and S. cerevisiae, 

showing the bimetal thiolate cluster expected in Zn2 Cys6 type transcription activators.  

The six cysteine residues are shown in ash color and the other conserved amino acids in 

the DNA binding domain are shown in black.  (b) GC/MS analyses of C. albicans (30°C) 

supernatants from SC5314, CAI4, BWP17, and aro80 grown in proline (GPP) or 

ammonia (GPA)-containing media. Tryptophol was below the detection limits for aro80 

GPA.  Bars represent standard error. 

 

Figure 2-5.  Effects of pH on production of aromatic alcohols. (a) GC/MS analysis of 

C. albicans (30°C).  SC5314, BWP17, CAI4, rim13, and rim101 grown in GPP at pH3 or 

pH7.  Values are the average of triplicate experiments.  Bars represent standard error.  (b) 

Northern blot analysis of RNA prepared from mid-log phase cells grown at 30°C.  Blots 

were probed for the transcripts indicated along the left side.  The numbers below 

represent the signal quantified with a Phosphor Imager™, normalized for ACT1 loading 
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control (average of three replicates).  Lane numbers at bottom. Note that lanes 7 and 8 are 

from the same blot and exposed for the same time.  
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CHAPTER 3 

The Regulation of Aro80p in Candida albicans 

Reference: 

Ghosh, S., B. W. Kebaara, K. W. Nickerson, and A. L. Atkin. The Regulation of 

Aro80p in Candida albicans. To be submitted. 
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Abstract: 

The opportunistic pathogen Candida albicans can metabolize aromatic amino 

acids in poor nitrogen conditions and excrete the non-metabolized carbon skeletons as 

aromatic alcohols or fusel alcohols via a well known Ehrlich‟s pathway conserved in 

fungi. The aromatic amino acids are metabolized first by aromatic transaminases (ARO8 

and ARO9) to produce α-keto acids; which are modified by aromatic decarboxylase 

(ARO10) to produce aromatic aldehydes; which are then reduced by alcohol 

dehydrogenases (ADH) to produce aromatic alcohols otherwise known as fusel alcohols. 

Aro80p is a Zn2Cys6 transcription activator for ARO9 and ARO10 in the yeast 

Saccharomyces cerevisiae and is required for the full activation of aromatic amino acid 

metabolism genes. In this report we studied the ARO80 homolog in C. albicans and its 

regulation in different physiological conditions. In contrast to the situation in the yeast S. 

cerevisiae, we found the Aro80p in C. albicans, is regulated by nitrogen catabolite 

repression genes as well as by pH pathways. Aro80p was activated by poor nitrogen 

sources such as proline and arginine and was repressed by ammonia. The aro80/aro80 

strain was also able to grow in the presence of phenylalanine, tyrosine, or tryptophan as 

sole sources of nitrogen. The production of aromatic alcohol is pH dependent and 

alkaline up-regulated. The pH regulation of the aromatic alcohol production was also lost 

aro80/aro80 strains. Northern analysis suggests that the alkaline up-regulation of ARO8, 

ARO9 and alkaline down-regulation of ARO10 was lost in aro80/aro80 strains.   

Key words: phenethyl alcohol, tyrosol, tryptophol, Aro80p, nitrogen catabolite 

repression (NCR), pH pathway  
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Introduction: 

In yeast Saccharomyces cerevisiae, aromatic amino acid metabolism is mainly 

regulated by a Zn2Cys6 transcriptional factor ARO80. Aro80p is activated in the presence 

of aromatic amino acids. Once activated it induces expression of aromatic transaminase 

(ARO9) and aromatic decarboxylase (ARO10) (7). The S. cerevisiae aro9 and aro80 

mutants were impaired in growth when tyrosine or tryptophan was used as the sole source 

of nitrogen (7). Again, ARO9 and ARO10 were induced only in the presence of the 

aromatic amino acid tryptophan; they were inactivated in the presence of other nitrogen 

sources such as ammonia or urea. In the presence of ammonia, a preferred nitrogen 

source, the transcription of ARO9 and ARO10 was repressed. Similarly, the transcription 

of both ARO9 and ARO10 was repressed in the presence of urea, another poor nitrogen 

source (7). This suggests that the activation of aromatic transaminase (ARO9) and 

decarboxylase (ARO10) depends on the presence of aromatic amino acids, not just the 

lifting of nitrogen catabolite repression (NCR). In the case of aro80 mutant ARO9 and 

ARO10 were not activated (7). This suggests that the activation of both ARO9 and ARO10 

are dependent on ARO80, the Zn2Cys6 transcription factor.  

We are interested to study Aro80p in C. albicans to see if its regulation of 

aromatic amino acid metabolism is different from S. cerevisiae. In this study we have 

specifically looked at how Aro80p is regulated in C. albicans cells and their effects on 

aromatic alcohol production levels. We found that in C. albicans, unlike in S. cerevisiae, 

Aro80p is activated by poor nitrogen sources whenever NCR genes are induced, thereby 

influencing the secretion of fusel alcohols. We also report that the pH regulation of the 

aromatic alcohol production is lost in aro80/aro80 strains. 
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Materials and Methods: 

Strains and growth conditions 

The C. albicans strains SC5314, CAI4 (ura3::imm434/ura3::imm434), and 

BWP17 (ura3::imm434/ura3::imm434, arg4::hisG/arg4::hisG, 

his1::hisG/his1::hisG) (11) were obtained from Alexander Johnson, University of 

California at San Francisco.  The aro80/aro80 (orf19.3012) insertion mutants were 

obtained from Dr. Aaron Mitchell‟s collection (9); they were derived from strain BWP17.   

For routine growth, YPD medium (10 g of yeast extract, 20 g of peptone, and 20 g 

of glucose per liter) was used.  To quantify aromatic alcohols in culture supernatants, 

GPP, GPR, or GPA media (4) were used.  GPP medium contains the following (per 900 

ml of distilled water): 4.0 g of KH2PO4, 3.2 g of Na2HPO4, 1.2 g of L-proline, and 0.7 g 

of MgSO4·7H2O.  After the medium was autoclaved, 100 ml of 20% (wt/vol) glucose, 1 

ml of a vitamin mix, and 0.25 ml of a mineral mix were added.  The vitamin mix contains 

the following (per 100 ml of 20% ethanol): 2 mg of biotin, 20 mg of thiamine-HCl, and 

20 mg of pyridoxine-HCl.  The mineral mix contains the following (per 100 ml of 0.1 N 

HCl): 0.5 g of CuSO4 · 5H2O, 0.5 g of ZnSO4 · 7H2O, 0.8 g of MnCl2 · 4H2O, and 0.5 g 

of FeSO4.  The vitamin mix and the mineral mix were filter sterilized through 0.2 µm 

Whatman (Maidstone, United Kingdom) cellulose nitrate filters and stored at 4°C.  For 

GPR, arginine (10 mM) replaced proline and for GPA, ammonium sulphate (10 mM) 

replaced proline.   

Quantification of Excreted Aromatic Alcohols 

C. albicans strains were cultured for 24 – 28 hours in 50 ml of defined medium 

(GPP, pH6.8) while shaking at 250 rpm at 30 ºC. The pH values were adjusted to 3.0 or 
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7.0 using 1N HCl or 1N NaOH to study the pH effects.  After growth the fungal cultures 

were harvested by centrifugation at 6,000 rpm for 10 min.  The supernatants were filtered 

through 0.2 Millipore filters, extracted with ethyl acetate, filtered, and concentrated by 

rotary evaporation to 50 l.  Then 1 l of sample was injected into a HP6890 GC/MS 

with 50 m Capillary column HP 19091B-005.  The flow rate was 1.0 ml/min. The GC 

used an inlet temperature of 280°C and temperature program of 80°C for 2 min, then 

60°C/min until 160°C and holding for 2 minutes and then 10°C/min until 300°C, and 

holding for 5 minutes with total run time 24.33 minutes.  MS used a 5-min solvent delay.  

Ethyl acetate extraction is suitable for the three aromatic alcohols as well as farnesol, 

whereas hexane or 1:4 ethylacetate/hexane is suitable for farnesol (6) but not for the 

aromatic alcohols.  The phenethyl alcohol was purchased from Aldrich Chemical Co., 

Milwaukee, WI; tyrosol from Avocado Research Chemicals Ltd., Heysham, UK; and 

tryptophol from TCI-EP, Tokyo. 

Northern Analysis 

C. albicans total RNA used for mRNA accumulation was extracted by the hot 

phenol extraction method using yeast cells harvested at mid-log phase (8).  Equal 

amounts of RNA (15 g) were resolved on 1.0% agarose–formaldehyde gels and 

transferred to GeneScreen Plus membranes (NEN Life Science Products, Boston, MA).  

The NorthernMax complete Northern blotting kit (Ambion, Austin, TX) was used for 

transfer and hybridization.  The DNA templates for probe synthesis were prepared using 

PCR with C. albicans SC5314 genomic DNA and the following primer pairs (5‟ to 3‟):  

ARO80 – ATGTCAATTGTCGAACCAG and TCAATTCAAAAAACTCCACAAG, 

ARO8 – TATTCCAACACCGTCGTTCA and ACAAACTGGTCCAAGGCATC, ARO9 



www.manaraa.com

62 

 

– CAAAACTCCGCCTTCCAGTA and AGCCATCCATCAACACCTTT, ARO10 – 

GTGCTTATGCTGCTGATGGA and TCTTTTTGGGTTCTGCTGCTG, RIM101 – 

AGTCCATGTCCCATTGAAGC and ACACCGCCAAACTCTAATGC, ACT1 – 

AGTTATCGATAACGGTTCTG and AGATTTCCAGAATTTCACTC.  The DNA 

templates were used to synthesize DNA probes labeled with 
32

P using an oligolabeling kit 

(Rad Prime DNA labeling system; Invitrogen Life Technologies, Carlsbad, CA), as 

described by Atkin et al. (2).  Northern blots were PhosphorImaged using a Storm 

Phosphorimager (Amersham Pharmacia Biotech) and measurements of ARO80, ARO8, 

ARO9, ARO10, RIM101 mRNA were normalized with ACT1 mRNA control.  

 

Results: 

Aro80p is regulated by NCR transcription factors:  

We have earlier reported that the Aro80p in C. albicans is only 32% identical to 

S. cerevisiae, but the DNA binding region, including six cysteine residues, is conserved 

in both species (4). First we wanted to confirm if Aro80p is activated solely in the 

presence of aromatic amino acids, as is the case in the yeast S. cerevisiae. Instead, we 

found that, the C. albicans Aro80p is also regulated by nitrogen catabolite repression 

genes. When the C. albicans cells were inoculated in a defined media with aromatic 

amino acids as the sole nitrogen source, all the wild type SC5314, control DAY286, and 

the aro80/aro80 strains of C. albicans were able to grow using tyrosine, tryptophan, or 

phenylalanine as the sole nitrogen source (Fig. 3-1 A). Wild type SC5314 (parent), 

DAY286 (control), and aro80/aro80 were able to utilize phenylalanine, tyrosine, or 

tryptophan as the sole source of nitrogen. They also had no defects in growth when all 
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three aromatic amino acids and ammonia were present as nitrogen sources (Fig. 3-1 A). 

The aro80/aro80 strain and the control DAY286 are histidine auxotrophs. So, in these 

experiments 40 µg/ml of histidine was added in the media to fulfill the auxotrophic 

requirement. To check if this minimal amount of histidine was contributing to the growth, 

all the strains were also grown without the aromatic amino acids but with 40 µg/ml 

histidine (Fig. 3-1 A, plate labeled nothing). There was only residual growth for all 

strains, suggests that the histidine used to fulfill the auxotrophy did not contribute to the 

growth of the C. albicans strains. In contrast, S. cerevisiae was not able to use these 

aromatic nitrogen sources when the ARO80 gene was disrupted (7).  

Similarly, C. albicans Aro80p is activated in the presence of poor nitrogen 

sources like proline or arginine (Fig. 1 B) but it is also repressed by ammonia (Fig. 3-1 

B). These results suggest that C. albicans ARO80 is NCR regulated, unlike S. cerevisiae. 

We also found that the ARO9 transcript was induced 68% in the presence of ammonia as 

a sole nitrogen source (GPA) compared to proline (GPP) (100%) as a sole source of 

nitrogen (Fig. 3-1 B). This comparatively high level of ARO9 transcript suggests that, 

although down-regulated, ARO9 was not completely inhibited by the presence of 

ammonia. This could be the reason for continued production of some aromatic alcohols in 

GPA (4). However, ARO80 was completely repressed by ammonia. Thus, the regulation 

of aromatic alcohol biosynthesis was completely different in C. albicans than in the yeast 

S. cerevisiae where Iraqui et al, 1999 reported that the ARO9 and ARO10 transcripts were 

only expressed in the presence of tryptophan. ARO9 and ARO10 were not expressed in 

the presence of either poor nitrogen sources like urea or good nitrogen sources such as 
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ammonia. Unlike the pathogenic fungus C. albicans (Fig. 3-2 B) also, ARO9 and ARO10 

were completely repressed in aro80 strains of S. cerevisiae (7).  

The pH regulation is lost in aro80∆/aro80∆ strain:  

Previously we showed that aromatic transaminases (ARO8, ARO9) are alkaline up 

regulated while the aromatic decarboxylase (ARO10) is alkaline down regulated (4). Thus 

we saw higher aromatic alcohol levels at pH 7 than at pH 3 (4). We also reported that this 

alkaline up regulation was lost in rim13/rim13 and rim101/rim101 mutants (4), 

suggesting a role for pH and the Rim101 pathway in aromatic amino acid metabolism. 

Here we report that in aro80/aro80 mutants of C. albicans the aromatic alcohol levels 

were low and their pH regulation had also been lost (Fig. 3-2 A). The production of 

phenethyl alcohol and tyrosol were very similar at pH 3 and pH 7 (Fig. 3-2 A) whereas 

the production of tryptophol was still alkaline up regulated, although less so than for the 

wild type SC5314, CAI4, and parent BWP17 (Fig. 3-2 A).  

Northern analysis revealed that ARO8 and ARO9 mRNAs were alkaline up 

regulated (~ 2 fold higher in alkaline conditions) in SC5314 and BWP17 (Fig. 3-2 B, 

Lanes 1-4) but not in aro80/aro80 (Fig. 3-2 B, Lanes 5, 6). Similarly, ARO10 was 

alkaline down regulated (~ 2 fold lower in alkaline conditions) in SC5314 and BWP17 

(Fig. 3-2 B, Lanes 1-4) but not in aro80/aro80 (Fig. 3-2 B, Lanes 5, 6). The aromatic 

alcohol production levels (Fig. 3-2 A) and the northern data (Fig. 3-2 B) are the average 

of three replicates. This data suggests that indeed the pH regulation of aromatic alcohol 

production was lost in aro80/aro80 mutants.  
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Discussion: 

Earlier we reported that aromatic transaminases (ARO8, ARO9) and aromatic 

decarboxylase (ARO10) are alkaline up regulated and alkaline down regulated 

respectively (4). At that time we proposed a model which suggested that aromatic amino 

acid metabolism genes were regulated by several transcription factors, including Gcn4p 

and the GATA transcription factors, along with Rim101p (4). In this report we have 

studied the regulation of the Zn2Cys6 transcription factor Aro80p and its role in aromatic 

amino acid metabolism. This study suggests that Aro80p is also under the control of at 

least two types of transcriptional activators, viz. the GATA transcription factors Gln3p 

and Gat1p, required for NCR, and Rim101p, required for alkaline activation. In the first 

part we observed that C. albicans can use phenylalanine, tyrosine, or tryptophan as the 

sole nitrogen source even when the Zn2Cys6 transcription activator Aro80p is absent (Fig. 

3-1 A). So, Aro80p is not required to activate the aromatic amino acid metabolism genes. 

We hypothesized that when grown in the presence of aromatic amino acids the conditions 

will be similar to growth under poor nitrogen sources. In that case the aromatic amino 

acid metabolism genes are also under the control of NCR. Our northern analysis data 

(Fig. 3-1 B) revealed that the ARO80 mRNA is also regulated by NCR as well as the 

ARO9 mRNA.  

In our previous study we reported that ARO8, ARO9, and ARO10 probably were 

regulated by NCR as well. The production of aromatic alcohols by aro80/aro80 was 

greatly reduced when grown in the presence of ammonia compared with proline as the 

sole nitrogen source (4). We also found GATAA binding sites in the upstream promoter 

regions of the aromatic transaminases and decarboxylase, suggesting that these enzymes 
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are also among the NCR sensitive genes (4). Here we report that the ARO9 transcript was 

slightly down-regulated in the presence of ammonia (68%), as opposed to proline 

(100%). This explains the high levels of the aromatic alcohols observed in the presence 

of poor nitrogen sources like proline. The aromatic alcohol yield is down-regulated, but 

not completely inhibited by a preferred nitrogen source like ammonia (4). The 

transcription factor Aro80p was inhibited by ammonia. The detection of ARO8, ARO9, 

and ARO10 in aro80/aro80 (Fig. 3-2 B) also testifies that in C. albicans cells aromatic 

transaminases and decarboxylase are regulated by NCR transcription factors like Gln3p 

and Gat1p. We hypothesize that in the presence of poor nitrogen sources GATA 

transcription factors such as Gln3p and Gat1p will bind to the upstream of aromatic 

transaminases (ARO8, ARO9) and aromatic decarboxylase (ARO10) as well as their 

transcription activator Aro80p. Aro80p is also under the control of NCR. Therefore, 

when the preferred nitrogen is used up the cells shift their machinery to use poor nitrogen 

sources. Aro80p will be activated, which will increase the levels of aromatic 

transaminases and decarboxylase. This will increase the production of aromatic alcohols.  

The availability of good nitrogen sources inside host varies with the site of 

infection. Moreover the physiological niches of the pathogenic fungus C. albicans and 

the yeast S. cerevisiae are different. Although both species uses same machinery to 

metabolize aromatic amino acids, the regulation of the aromatic amino acid metabolism 

genes is different in each case. The opportunistic pathogen C. albicans has evolved in 

such a way so that it can use aromatic amino acids in more than one way when good 

nitrogen sources are unavailable. Interestingly, fusel alcohols inhibit initiation factor 

eIF2B activity in the yeast S. cerevisiae (5). The initiation factor eIF2B is required for 
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general protein synthesis in a cell. It also serves to derepress the transcription factor 

Gcn4p required for general amino acid control response (5). Thus, when the fusel alcohol 

is accumulated in large amount outside the cell, it can serve as a nitrogen starvation 

signal. It would be very interesting to find out if a similar response occurs in the 

pathogenic fungus C. albicans. If the fusel alcohols can derepress Gcn4p in C. albicans, 

then the amino acid biosynthetic genes can be activated by this feedback control 

mechanism. In C. albicans cells, Gcn4p is also reported to induce hyphal morphogenesis 

by interacting with Ras-cAMP pathway (10). This can be an explanation of how tyrosol 

might induce hyphal morphogenesis in favorable conditions as has been reported by some 

other groups (1, 3).     
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Figure Legends: 

Figure 3-1. Effects of nitrogen catabolite repression (NCR) on ARO80. (a) Growth of 

aro80/aro80 mutant on aromatic amino acids. Parent strain SC5314 (ARO80/ARO80), the 

control DAY286 and aro80/aro80 strain streaked on defined media with phenyl alanine, 

tyrosine, Tryptophan, all 3 aromatic amino acids and ammonia, and nothing as sole 

nitrogen sources and incubated at 30ºC. All the media were supplemented with 40 µg/ml 

of histidine to meet auxotrophic requirements. The positions of each strain in the plate are 

shown in the bottom right panel. 

 (b) Northern blot analysis of RNA prepared from SC5314 mid-log phase cells grown in 

GPP (P), GPR (R), or GPA (A) at 30°C.  Blots were probed for the transcripts indicated 

along the right side.  The numbers below represent the signal quantified with a Phosphor 

Imager™, normalized for ACT1 loading control (average of three replicates).   

Figure 3-2. Effects of pH on production of aromatic alcohols in aro80/aro80 strains. 

(a) GC/MS analysis of C. albicans (30°C).  SC5314, CAI4, BWP17, and aro80/aro80 

strains were grown in GPP at pH3 or pH7.  Values are the average of triplicate 

experiments.  Bars represent standard error.  (b) Northern blot analysis of RNA prepared 

from mid-log phase cells grown at 30°C.  Blots were probed for the transcripts indicated 

along the left side.  The numbers below represent the signal quantified with a Phosphor 

Imager™, normalized for ACT1 loading control (average of three replicates).  Lane 

numbers at bottom.  
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CHAPTER 4 

Arginine induced germ tube formation in Candida albicans is  

essential for escape from murine macrophage RAW264.7 line 
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Abstract 

The opportunistic fungal pathogen Candida albicans is a part of the normal flora 

but it also causes systemic candidiasis if it reaches the blood stream. Upon being 

phagocytized by macrophages, an important component of innate immunity, C. albicans 

rapidly up-regulates a set of arginine biosynthetic genes. Arginine, urea, and CO2 induced 

hyphae in a density-dependent manner in wild type, cph1/cph1, and rim101/rim101 

strains but not in efg1/efg1 or cph1/cph1 efg1/efg1 strains. Arginase (Car1p) converts 

arginine to urea, which in turn is degraded by urea amidolyase (Dur1,2p) to produce CO2, 

a signal for hyphal switching.  We used a dur1,2/dur1,2 mutant (KWN6) and the 

complemented strain KWN8 (dur1,2/dur1,2 :: DUR1,2/DUR1,2) to study germ tube 

formation. KWN6 could not make germ tubes in the presence of arginine or urea but did 

make germ tubes in the presence of 5% CO2, which bypasses Dur1,2p. We also tested the 

effect of arginine on the interaction between the macrophage cell line RAW264.7 and 

several strains of C. albicans. Arginine activated an Efg1p-dependent yeast to hyphae 

switch, enabling wild type C. albicans and KWN8 to escape from macrophages within 6 

h, whereas KWN6 was defective in this regard.  Additionally, two mutants that cannot 

synthesize arginine, BWP17 and SN152, were defective in making hyphae inside the 

macrophages, whereas the corresponding arginine prototrophs, DAY286 and SN87, 

formed germ tubes and escaped from macrophages.  Therefore, metabolism of arginine 

by C. albicans controls hyphal switching and provides an important mechanism for 

escaping host defense.   

Key words: arginine, DUR1,2, phagocytosis, Efg1p-dependent pathway, urea 

amidolyase 
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Introduction 

In immunocompromised patients such as those with AIDS, the innate immune 

system has an increased role in resisting infectious diseases. However, the opportunistic 

fungal pathogen Candida albicans has evolved mechanisms to evade innate immunity, 

which is an important reason that candidiasis is a major complication in AIDS patients.  

C. albicans resists macrophage phagocytosis via a mechanism that does not stimulate 

apoptosis in macrophages (22).  C. albicans induces hyphae inside macrophages, thereby 

penetrating the cell membrane and escaping macrophages (21).  C. albicans cells that are 

defective in making germ tubes, such as cph1/cph1 efg1/efg1 (21) and cdc35/cdc35 (22), 

cannot escape the macrophages following phagocytosis and are killed.  Thus, the 

interaction between C. albicans and macrophages is critical in determining its 

pathogenicity in immunocompromised patients. 

Lorenz et al (21) used DNA arrays to follow the transcriptional response by C. 

albicans to internalization in macrophages.  Their transcriptional analysis suggested that 

once inside the macrophage C. albicans shifts from glycolysis to gluconeogenesis, 

activates fatty acid degradation, down-regulates transcription, and up-regulates arginine 

biosynthesis. In the later stages following internalization, hyphal growth is important to 

piercing the macrophage cell membrane, which at that time the cells resume glycolytic 

growth (21). Clearly switching from yeast to hyphae is a critical factor in escaping from 

macrophages after phagocytosis. Thus, one important question is: what triggers the 

morphological switch in C. albicans inside the macrophage?  

In C. albicans the yeast to hyphae switch has been very well studied (3, 4, 18, 38).  

It is a carefully coordinated event which is regulated by multiple factors and several 
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signal transduction pathways.  The environmental triggers for hyphal development 

include growth
 
at 37ºC, the presence of serum or N-acetylglucosamine (GlcNAc),

 
neutral 

pH, CO2, and nitrogen starvation (3, 4, 18, 38).  These environmental stimuli act by 

turning on one or more
 
signal transduction pathways that either stimulate or repress

 

hyphal specific genes. These pathways include the Cph1p-mediated MAPK pathway and 

the Efg1p-mediated cAMP dependent protein kinase A (PKA) pathway, which has two 

isoforms of PKA, Tpk1p and Tpk2p, with differential effects on hyphal morphogenesis.  

Two other hyphal regulators, Rim101p and Czf1p, may function through Efg1p or act in 

parallel with Efg1p, while another transcription factor Tec1p is regulated by Efg1p and 

Cph1p.  The MAPK cascade includes Cst20p (MAPKKK), Hst7p (MAPKK), Cek1p 

(MAPK) and the downstream transcription factor Cph1p, which is a homolog of the S. 

cerevisiae transcription factor Ste12p.  C. albicans also has negative regulators of the 

hyphal transition.  Chief among these is Tup1p, which acts in concert with Rfg1p, Nrg1p, 

or Rbf1p (3, 4, 17, 18, 38).  The downstream targets of these environmental sensing 

pathways include the hyphal wall protein Hwp1p, adhesins of the ALS family, and 

extracellular hydrolytic enzymes (secreted aspartyl proteases, phospholipases) (3, 4, 18, 

38).   

Another unusual feature of C. albicans is that it uses the cytoplasmic enzyme urea 

amidolyase, encoded by DUR1,2, to hydrolyze urea.  Dur1,2p (degradation of urea) is a 

multifunctional, biotin – dependent enzyme (31) that was first characterized in the yeast 

Candida utilis (32).  It is also present in Saccharomyces cerevisiae (7, 39).  Catabolism of 

urea involves a single protein with two enzymatic activities.  The first is an avidin-

sensitive urea carboxylase (EC 6.3.4.6); urea is carboxylated in an ATP dependent 
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reaction forming allophanate, also known as urea carboxylate.  The second is allophanate 

hydrolase or allophanate amidohydrolyase (EC 3.5.1.54), which releases two molecules 

each of NH3 and CO2 (39).   

This paper addresses how the macrophage signal for hyphal switching relates to 

previously known signaling pathways.  The transcriptional response analysis by Lorenz et 

al (21) showed that at an early stage arginine biosynthesis was strongly up-regulated. In 

this report we link arginine biosynthesis to the hyphal switch necessary for escape from 

the macrophage.  The link is mediated by the enzyme urea amidolyase encoded by 

DUR1,2.  Biosynthesis of arginine, which is metabolized by C. albicans cells producing 

CO2,   is essential and acts as a signal to activate the cAMP-dependent PKA pathway, 

thereby regulating the yeast to hyphae switch inside the macrophage. This series of 

events is critical for hyphal development inside macrophage at the initial phase after 

phagocytosis, thereby piercing the macrophage and escaping. 

 

Methods 

Strains, media and growth condition 

The C. albicans strains A-72 were obtained from Dr. Patrick Sullivan, University 

of Otago, Dunedin. Wild type clinical isolate SC5314, CAF2-1 (ura3::imm434/URA3) 

(11), CAI4 (ura3::imm434/ura3::imm434) (12), SN152 (URA3/ura3::imm434 his1/his1 

arg4/arg4 leu2/leu2 IRO1/iro1::imm436) (28), SN87 (URA3/ura3::imm434 his1/his1 

leu2/leu2 IRO1/iro1::imm436) (28) were obtained from Dr. Alexander Johnson, 

University of California at San Francisco. BWP17 (ura3::imm434/ura3::imm434, 

arg4::hisG/arg4::hisG, his1::hisG/his1::hisG) (27) and DAY286 
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(ura3::imm434/ura3::imm434, pARG4::URA3:: arg4::hisG/arg4::hisG, 

his1::hisG/his1::hisG) (10) were obtained from Dr. Aaron Mitchell‟s collection. JKC19 

(ura3::imm434/ura3::imm434, cph1::hisG/cph1::hisG, URA3::hisG) (20), HLC52 

(ura3::imm434/ura3::imm434, efg1::hisG/efg1::hisG, URA3::hisG) (20) and HLC54 

(ura3::imm434/ura3::imm434, cph1::hisG/cph1::hisG, efg1::hisG/efg1::hisG, 

URA3::hisG) (20) were obtained from Dr. Gerald R. Fink, Massachusetts, USA and 

CAR2 (rim101::hisG/rim101::hisG-URA3-hisG ura3::imm434/ura3::imm434) (30) was 

obtained from Dr. Fritz A. Muhlschlegel, Canterbury, UK. GTC41 

(ura3::imm434/ura3::imm434, GCN4/gcn4::hisG-URA3-hisG) (37), GTC43 

(ura3::imm434/ura3::imm434, gcn4::hisG-URA3-hisG/gcn4::hisG) (37) and GTC45 

(ura3::imm434/ura3::imm434, gcn4::hisG/gcn4::hisG, CIp10-GCN4) (37) were obtained 

from Dr. Alistair J. P. Brown, Aberdeen UK. The construction of KWN2 

(dpp3::C.d.HIS1/ dpp3::C.m.LEU2, his1/his1, leu2/leu2, arg4/arg4) and KWN4 

(dpp3::DPP3/ dpp3::DPP3, his1/his1, leu2/leu2, arg4/arg4) was described previously 

(25). KWN6 (dur1,2/dur1,2), KWN7 (dur1,2/dur1,2::DUR1,2) and KWN8 

(dur1,2/dur1,2::DUR1,2/DUR1,2) were made by adapting the strategy reported by Reuß 

et al (34) using wild type strain A72 (16). All the KWN strains were made by Dhammika 

Navarathna and they are described in details in his thesis. 

For routine growth and maintenance of the C. albicans strains, YPD medium (10 

g of yeast extract, 5 g of peptone and 20 g of glucose per liter) at 30ºC was used. 

Auxotrophic mutants were grown in YPD supplemented with 40 µg/ml of required amino 

acid. RAW264.7 cells were grown in complete culture medium (500 ml of Dulbecco‟s 
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Modified Eagle‟s Medium + 50 ml of Fetal Bovine Serum + 0.55 ml of 50 mg/ml 

gentamycin) at 37C in the presence of 5% CO2. 

Germ Tube Formation (GTF) Assay 

C. albicans cells from stationary phase were transferred to GlcNAc – Imidazole – 

Mg buffer, pH 6.8. (11 mM imidazole, 3 mM MgSO4, and 2.6 mM N-acetyl-D-

glucosamine) (16) at 37ºC for 4 hours. Germ tube induction by arginine and urea was 

performed by using 0.004% glucose and 20 mM arginine or 20 mM urea in distilled 

water at 37ºC. There was no GTF in the glucose – only controls, i.e. with no added 

arginine or urea. GTF assays in the presence of 5% CO2 were performed in two ways.  

The first paralleled the arginine and urea experiments in that it used screw-cap flasks 

containing 0.004% glucose at 37ºC whereas the second transferred C. albicans cells 

growing in YPD in 6 well plates at 37ºC exposed to atmosphere of air with 5% CO2. All 

the assays except GTF assay in the presence of CO2 were conducted in 25-ml Erlenmeyer 

flasks using C. albicans inoculums, which had been stored at 4°C in 50 mM potassium 

phosphate buffer (pH 6.5).  The cells were added in aliquots to pre-warmed (37°C) assay 

medium to give a final cell density of 10
5
-10

7
 cells/ml.  The flasks were shaken on a New 

Brunswick Scientific G2 shaker at 37°C and 225 rpm for 4-6 h and examined for GTF by 

confocal microscopy. At time zero, the inoculated cells are >98% undifferentiated with 

0% germ tubes and 0 to 2% budding yeasts.  

Co-culture conditions and macrophage ingestion assay 

 The murine RAW264.7 macrophage-like cell line was grown in DMEM culture 

media that contained 10% Fetal Bovine Serum and 50 g/ml gentamycin.  One day prior 

to the experiment, RAW264.7 cells that reached confluence in culture media were 
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collected, washed and counted with a hemacytometer. 10
6
 cells were plated in culture 

media in 6 well plates and grown overnight in 5% CO2 at 37ºC to allow adherence to the 

surface. On day zero the non-adherent cells were removed from the plates by aspiration 

and fresh pre-warmed complete culture medium was added.  Two forms of C. albicans 

yeast cells were used; either up to one week-old resting cells, or actively growing, mid-

log phase cells.  The resting phase cells were prepared by growing C. albicans strains 

overnight in YPD at 30ºC, washing the cells 3 times with 50 mM potassium phosphate 

buffer (16) and storing the cells in the same buffer.  In the second case, these yeast cells 

were diluted 1:100 and grown for 6-8 h in YPD at 30°C whereupon the log phase cells 

were harvested by centrifugation. Cultures were washed with phosphate-buffered saline 

and concentrations were measured using a Spectronic 20 spectrophotometer. 10
6
 or 2x10

6
 

cells were added to each well (1:1 or 2:1 C. albicans : macrophage ratio), and the plates 

were incubated for 6 h at 37°C. At 1 h time point the plates were washed with pre-

warmed phosphate-buffered saline and fresh pre-warmed complete culture media was 

added to minimize C. albicans cells that were not phagocytized. The co culture 

conditions, germ tube formation and escape from macrophage were examined by phase 

contrast microscopy at different time points. Microscopic examination revealed that a 

small number of C. albicans cells remained that were not phagocytized but adhered to the 

surface.  

 

Results 

Arginine, urea and CO2 stimulate hyphae by a cell density dependent pathway.  
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Wild type C. albicans A72 formed hyphae in the presence of 2.6 mM GlcNAc, 20 

mM arginine, 20 mM urea, or 5% CO2 within 4 – 6 h (Fig. 4-1 B).  High (20 mM) levels 

of arginine or urea consistently induced germ tube formation in 80 – 90% of the cells 

(Fig. 4-1 B), whereas lower (5 mM) levels stimulated only ca. 30% of the C. albicans 

cells.  Germ tube induction by arginine, urea or CO2 was cell density dependent in that 

the efficiency of GTF was 80-90% at < 10
6
 cells/ml, ca. 40% at 10

7
 cells/ml, and even 

less at higher cell densities (data not shown).  Interestingly, the presence of 5% CO2 

stimulated GTF under both nutrient rich (YPD) (Fig. S4-1) and poor (0.004% glucose) 

conditions (data not shown), and in both cases GTF was cell density-dependent.  Also, 

for both arginine and urea, GTF was blocked by ammonium sulfate; 5 mM ammonium 

sulfate reduced GTF to 10 – 35% and 10 mM blocked GTF completely.  In contrast, CO2 

stimulated GTF was not blocked by 10 mM ammonium sulfate.  These results are 

consistent with one or more steps in arginine and urea stimulated GTF being subject to 

nitrogen catabolite repression (NCR).  In S. cerevisiae, both arginase (36) and urea 

amidolyase (8) are subject to NCR.  Finally, arginine stimulated biofilm formation in C. 

albicans A72 (data not shown). 

Germ tube formation is induced by arginine, urea, or CO2 in an efg1 dependent 

way.  

We also examined GTF using four strains of C. albicans that lack transcription 

factors responsive to Rim101p dependent signaling (CAR2) (30), MAP kinase signaling 

(JKC19) (20), cAMP signaling (HLC52) (20), or both (HLC54) (20).  These strains are 

all derived from CAI4, and they are particularly useful in determining the pathway(s) 

responsible for germ tube induction by any stimulant.  The CAI4 parent exhibited GTF 
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with 2.6 mM GlcNAc, 20 mM arginine, 20 mM urea, or 5% CO2 (Fig. 4-2). Significantly, 

the JKC19 (cph1/cph1) and CAR2 (rim101/rim101) mutants could respond to arginine, 

urea or 5% CO2 (Table 4-1), whereas the HLC52 (efg1/efg1) and HLC54 

(cph1/cph1::efg1/efg1) mutants could not (Fig. 4-2 and Table 4-1). These results suggest 

that arginine, urea, and 5% CO2 induce GTF by an Efg1p-dependent mechanism (Fig. 4-

2).  In C. albicans external CO2 is transported inside, either by diffusion or by 

transporters, and converted to HCO3
-
 by carbonic anhydrase, thus activating adenylyl 

cyclase to synthesize cAMP, which in turn triggers the morphogenetic switch from yeast 

to hyphae (2).  

Urea amidolyase mutants (dur1,2/dur1,2) cannot utilize urea as a sole nitrogen 

source 

Arginine can be converted to urea and L-ornithine by the enzyme arginase 

(Car1p) (24, 36), and urea is converted to CO2 and ammonia by urea amidolyase 

(Dur1,2p) (7).  To explore whether arginine, urea, and CO2 are parts of a pathway 

stimulating GTF or if they act separately, we created C. albicans dur1,2 knockout mutant 

(KWN6) and the homozygous reconstituted strain (KWN8).   

The effects of DUR1,2  knockout and reconstitution on the ability to use urea as a 

nitrogen source are shown in Fig. 4-1A.  The parent strain A72 and the reconstituted 

strain (KWN8) were able to grow on defined minimal media with L-proline, urea, or L-

arginine as the sole nitrogen source, whereas the dur1,2, dur1,2 knockout strain (KWN6) 

was unable to grow on urea at either 30°C (Fig. 4-1A) or 37°C (not shown).  However, 

KWN6 grew as well as its A72 parent on four media: YPD (not shown) and the three 

defined media GPP (L-proline), GPR (L-arginine), and GPPU (L-proline and urea).  It is 
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not surprising that KWN6 grew on GPR; Car1p breaks arginine down to urea and L-

ornithine, and even though KWN6 cannot use the nitrogens in urea, they can still use the 

nitrogens in L-ornithine.  Also, all three strains grew on proline and urea together, 

showing that the inability of KWN6 to grow on urea only (Fig 4-1 A) was not due to the 

accumulation of toxic components derived from urea.  None of the strains grew on 

thiourea, and thiourea did not inhibit the growth of A72 on either L-proline or urea (data 

not shown). 

Arginine, urea and CO2 induce germ tube in a single sequential pathway. 

A72 and the reconstituted KWN8 behaved identically under all GTF inducing 

conditions, i.e. GlcNAc, arginine, urea, and 5% CO2.  However, KWN6 was defective in 

GTF in the presence of arginine or urea (Fig. 4-1 B), even though it exhibited unimpaired 

GTF in the presence of 5% CO2 or GlcNAc (Fig. 4-1 B) or 10% serum (data not shown).  

The 6 hr GTF assay for KWN6 in 5% CO2 (Fig. 4-1 B) is somewhat misleading in that it 

shows many budding yeasts along with the hyphae.  The 1 and 2 hr samples showed that 

> 98% of the cells underwent GTF (Fig. S 4-1); the budding yeasts only appeared 2-6 hrs 

after inoculation.  This shift to the yeast morphology is likely a cell density dependent 

phenomenon (26).  These results suggest a pathway whereby arginine is converted to urea 

and then to CO2, with CO2 acting as a common signal for GTF in C. albicans. These 

results are summarized in Table 4-1. They are consistent with a single sequential pathway 

for stimulating germ tube formation (Fig. 4-3). This pathway merges our data for arginine 

and urea with the CO2, cAMP, and Efg1p-dependent pathway developed by the 

Muhlschlegel laboratory (2). 
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Arginine biosynthesis is essential for the escape of C. albicans from RAW264.7 

macrophage cell line.  

We used two types of mutants to test whether the arginine to urea to CO2 signal 

operates inside macrophages.  The first type (this section) cannot convert arginine or urea 

to CO2 (dur1,2/dur1,2) while the second type (next section) cannot synthesize arginine.  

C. albicans A72 (DUR1,2/DUR1,2), KWN6 (dur1,2/dur1,2), and KWN8 

(dur1,2/dur1,2::DUR1,2/DUR1,2) all formed hyphae within 1 hr at 37C in the complete 

macrophage growth medium with a 5% CO2 atmosphere.  This observation shows that 

KWN6 is not defective in its hypha forming ability (Table 4-1).  Cells from both resting 

phase and log phase cultures behaved similarly in terms of GTF in the complete culture 

medium.  These observations are not surprising since this culture medium contains a 

powerful trigger of GTF, 10% serum and the cells are incubated in an atmosphere that 

contains 5% CO2, another trigger for GTF.  Thus, hyphal growth was also observed in co-

culture experiments for any C. albicans that had not been ingested by the RAW264.7 

macrophage cells.   

Wild type C. albicans A72 was fully engulfed by the macrophages by 1 hr, but 

within 4 hrs the fungus had made hyphae inside the macrophage cells, and by 6 hrs it had 

penetrated the membranes and emerged or escaped from the RAW264.7 cells.  In 

contrast, KWN6 (dur1,2/dur1,2), the urea amidolyase knock out mutant, exhibited 

delayed hyphae formation; by 4 hrs there were mostly yeast cells and very few hyphae 

inside the RAW264.7 cells.  Similarly, by 6 hrs the percentage and length of germ tubes 

were much less for KWN6 than for the wild type A72.  Finding a few hyphae on KWN6 

cells likely means that those cells had been triggered for GTF by the serum and CO2 and 
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remained committed (26) for GTF even after ingestion.  The ability for GTF inside 

RAW264.7 macrophage cells was fully restored in both the DUR1,2 complemented 

strains, the singly DUR1,2 reconstituted KWN7 (Fig. S 4-2) and the doubly DUR1,2 

reconstituted KWN8 (Fig. 4-4 A).   

The wild type clinical isolate SC5314 was also tested and found positive for the 

yeast to hyphae switch and escape from RAW264.7 cells (Fig. 4-4 B) as was CAF2-1 

(ura3/URA3), but CAI4 (ura3/ura3) was unable to stimulate hyphae and penetrate the 

RAW264.7 cells (Fig. 4-4 B).  This defect might be because of the lack of iro1 (13), 

which is required to acquire iron.     

Arginine auxotrophic mutants are defective in escaping from RAW264.7 

macrophage cell line.  

To test our hypothesis further, we selected two genetically related pairs of amino 

acid auxotrophic mutants. BWP17 requires his, arg, and ura (27) whereas DAY286 

requires only his (10).  Similarly, SN152 requires his, leu, and arg whereas SN87 requires 

only his and leu (28).  We found that BWP17 and SN152 could not stimulate hyphae 

inside the RAW264.7 cells; they remained inside the macrophages even after 6 hrs (Fig. 

4-4 C).  In contrast, DAY286 and SN87 penetrated the membranes and emerged from the 

macrophages by 6 hrs (Fig. 4-4 C). These data strongly suggest that arginine biosynthesis 

is a key regulator for the yeast to hyphae switch inside macrophages. This view was 

confirmed by the inability of two arg4 mutants, KWN2 (dpp3/ dpp3, arg4/arg4) and 

KWN4 (dpp3/ dpp3::DPP3/DPP3, his1/his1, leu2/leu2, arg4/arg4), to escape from 

RAW264.7 cells (Fig. S 4-3). 
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Arginine biosynthesis and escape from macrophages are not regulated by Gcn4 and 

the General Amino Acid Control pathway.  

When eukaryotic cells are starved for nitrogen, the cells respond by activating 

Gcn4p, a transcription factor that targets roughly 500 genes including most of the amino 

acid biosynthetic genes (15).  The macrophage phagosome environment is likely to be 

nutritionally poor (5).  If the phagosome is nitrogen starved, then it should activate 

Gcn4p, thereby inducing many amino acid biosynthetic genes as well as morphogenesis 

(37).  Thus, we tested a series of gcn4 related mutants of C. albicans (Fig. 4-4 D).  

Significantly, all four strains, CAF2-1 (GCN4/GCN4), GTC41 (gcn4/GCN4), GTC43 

(gcn4/gcn4), and GTC45 (ura3/ura3, gcn4/gcn4::CIP10-GCN4) (37), switched from 

yeasts to hyphae and were able to escape from the RAW264.7 cells (Fig. 4-4 D).  Thus, 

our results are consistent with the DNA array results of Lorenz et al (21).  They found 

that apart from arginine no other amino acid biosynthetic genes were up regulated (21).  

Taken together, these data suggest that arginine biosynthesis inside the macrophage is not 

regulated by Gcn4p but by some other pathway, possibly Arg82p and the Arg80p-

Mcm1p-Arg81p complex, which are known to regulate arginine biosynthesis in S. 

cerevisiae (23).  This pathway, which specifically induces the ARG genes just to breach 

the macrophage membranes, is of enormous importance as this breach might lead to 

systemic candidiasis.     

 

Discussion 

 We have elucidated the signaling pathway whereby C. albicans initiates hyphal 

growth after being ingested by macrophages.  Lorenz et al (21) showed that the genes for 
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L-arginine biosynthesis were induced following internalization by macrophages, and 

Sims (35) and Bahn and Muhlschlegel (2) showed that elevated CO2 triggered hyphal 

growth.  We have connected these two observations via the enzyme urea amidolyase 

(Dur1,2p).  The key role of urea amidolyase is shown by the inability of a dur1,2/dur1,2 

mutant (KWN6) to escape from mouse macrophages, while this ability is restored in the 

reconstituted strains KWN7 and KWN8.  The suggested signaling pathway is shown in 

Fig. 4-3.   

 A critical role for arginine following macrophage internalization was implied by 

DNA microarray studies (21).  We confirmed that hypothesis using two sets of paired 

mutants (Fig. 4-4 C).  Two strains with an arginine auxotrophy could not escape from the 

macrophages, whereas the corresponding strains without an arginine auxotrophy could.  

Interestingly, the strains that were able to escape were auxotrophic for amino acids other 

than arginine.  These findings strongly suggest that the induction of germ tube formation, 

which is essential for escape from macrophages, requires biosynthesis of arginine but not 

other amino acids inside macrophages. Also, there is an apparent paradox between the 

inability of SN152 to escape from macrophages within 6 hrs (Fig. 4-4 C) and its 

pathogenicity in a mouse tail vein model (28). This continued pathogenicity may just 

demonstrate the artificial nature of the tail vein model or it could reflect the eventual 

escape of some SN152 from macrophages after a longer period of time. 

The last half of the proposed signaling pathway (Fig. 4-3) is similar to that 

described by Bahn and Muhlschlegel (2).  They showed that C. albicans can induce germ 

tubes in the presence of CO2 by activating adenylate cyclase (2).  The presence of CO2 is 

important because C. albicans can convert CO2 to bicarbonate inside the cell by the 
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enzyme carbonic anhydrase (Nce103p).  Bicarbonate then activates adenylate cyclase 

(Cdc35p), which in turn activates cAMP dependent protein kinase A, thereby activating 

hyphal specific genes in an Efg1p-dependent manner (2).  We confirmed that arginine, 

urea, and CO2 induce hyphae in an Efg1p-dependent manner (Fig. 4-2).  It has been 

already established that yeast to hyphae switch is a critical virulence factor in C. albicans 

(26).   

Once inside a macrophage, arginine is converted to L-ornithine and urea by the 

enzyme arginase (Car1p) (24) and urea is converted to CO2 and NH3 by the enzyme urea 

amidolyase (Dur1,2p) (7).  From microarray data, Lorenz et al (21) observed that 1 hr 

after ingestion CAR1 (19.3934) and two other related arginase genes (19.10922 and 

19.5862) were up-regulated 3.2-, 4.7-, and 5.1- fold respectively.  DUR1,2 (19.780) was 

also up-regulated after 1 hr but only by 1.4- fold (supplementary data for ref 21).  These 

results suggest that inside the macrophage C. albicans not only synthesizes arginine but 

also utilizes arginine.  The dur1,2/dur1,2 mutant could not use arginine or urea for GTF 

but was able to respond to its downstream product CO2 (Fig. 4-1). The inability of arg4 

and dur1,2 mutants to escape from macrophages suggests that, even though the 

RAW264.7 cells were grown in 5% CO2, the phagosomes contained significantly less 

CO2. Alternatively, the phagosome environment might be altered in an unknown manner 

that prevents C. albicans from responding to high CO2.  

Furthermore, we observed that 5-10 mM ammonium salts prevented GTF as 

induced by GlcNAc, argininine, or urea but not by 5% CO2.  The explanation for these 

differences probably resides in the realm of nitrogen catabolite repression (NCR).  

Comparative study of C. albicans and S. cerevisiae often sheds light on the genetic 
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mechanisms by which regulatory mechanisms work. In the case of S. cerevisiae, both 

CAR1 (34, 36) and DUR1,2 (8) are under the control of NCR.  When rich nitrogen 

sources such as ammonia or asparagine are available the cells are designed to utilize them 

first and repress other genes that are responsible for breaking down poorer nitrogen 

sources like proline, arginine or urea (40). When cells are starved for nitrogen, these 

NCR- regulated genes are induced.  In C. albicans we found several GAT(A/T)(A/G) 

sites in the 1000 bp upstream of the open reading frames for both CAR1 and DUR1,2.  

These are the putative binding sites for the GATA transcription factors Gln3p and Gat1p, 

which can mediate NCR in C. albicans (9).  This regulation makes sense because in the 

presence of arginine and urea C. albicans will induce the NCR-regulated genes CAR1 and 

DUR1,2 which in turn will make enough CO2 to induce hyphae by the cAMP/PKA 

pathway (Fig. 4-3).  The use of 5% CO2 bypasses the steps subject to NCR, shown in the 

box in Fig. 4-3.  As a final thought on the significance of CAR1 and DUR1,2 being NCR-

regulated, macrophage phagosomes are acidic (21) whereas neutrophil phagosomes are 

more basic (33).  If the greater alkalinity in neutrophils is ammonia-mediated, the 

resulting repression of CAR1 and DUR1,2 could partially explain why macrophages kill 

C. albicans less effectively than do neutrophils (1, 33). 

DNA array analysis after phagocytosis by human neutrophils revealed that both 

C. albicans and S. cerevisiae induced genes for methionine and arginine biosynthesis but 

still could not escape from neutrophils (33).  In addition to the NCR-based explanation 

provided in the previous paragraph, this situation may arise because neutrophils kill, or at 

least influence, the C. albicans cells quickly through a more potent oxidative and 

nitrosative burst, thus preventing hyphal formation.  This explanation is consistent with 
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the role of macrophages in innate and adaptive immune responses, which in addition to 

directly killing the invading microbes is to present antigens to T cells and to produce 

many different cytokines and chemokines that in turn attract other innate and adaptive 

immune components.  For C. albicans cells ingested by neutrophils, only about 70% of 

the cells were still alive by 60 min (33), whereas for macrophages all of the cells had 

formed hyphae and escaped by 6 hrs (21).  In a separate study, Arana et al (1) found that 

only 24% of C. albicans cells survived after 2 hrs inside neutrophils, whereas 234% (cell 

replication) had survived after 2 hrs inside macrophages (1).  These results along with our 

own suggest that macrophages kill C. albicans less effectively than do neutrophils. 

C. albicans has at least three putative arginases (encoded by CAR1, orf 19.3418, 

and orf 19.5862), all of which are strongly induced in macrophages (21).  Why are three 

arginases needed and do they serve the same function?  Murine macrophages, including 

RAW264.7 cells, primarily kill microbes via nitrosative stress (6, 19, 29).  This NO 

production is mediated by the enzyme iNOS, which requires arginine as a substrate.  

Some bacteria are known to avoid macrophage killing by inducing arginase in the host 

macrophages (19), and a similar protection against macrophage killing was attributed to 

arginase (rocF) production by Helicobacter pylori (14).  Therefore, induction of arginase 

upon ingestion by macrophages may provide a second survival benefit to C. albicans by 

depriving macrophages of the substrate required for synthesis of NO.  In this regard, it is 

significant that Car1p and Dur1,2p are both cytoplasmic; they do not have predicted N-

terminal signal peptides (http://www.cbs.dtu.dk/services/SignalP/).  In contrast, the 

proteins encoded by orf 19.3418 (361 amino acids) and orf 19.5862 (418 amino acids) 

have predicted signal peptides, with probabilities of 1.00 and 0.97, respectively.  Thus, it 

http://www.cbs.dtu.dk/services/SignalP/
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seems likely that the three arginases serve at least two functions.  Car1p is cytoplasmic, 

working with Dur1,2p in a pathway for GTF (Fig. 4-3), whereas the other two arginases 

are excreted. The excreted arginases may curb nitrosative stress in some fashion. This 

suggestion predicts that mutants defective in the arginases would have reduced survival 

in macrophages. Arginase induction would not affect killing by neutrophils, which rely 

instead on myeloperoxidase. 

Gcn4p is a transcription factor that activates most of the amino acid biosynthetic 

genes under nitrogen starving conditions (15). Strains lacking Gcn4p were examined to 

see if it regulated arginine biosynthesis during the initial phase after phagocytosis. It was 

clear from our data (Fig. 4-4 D) that Gcn4p is not essential for hyphae formation because 

gcn4/gcn4 mutants were fully capable of forming hyphae inside macrophages (Fig. 4-4 

D).  However, the fact that Gcn4p does not appear to be needed increases the interest in 

finding the activator/pathway which does induce the arginine biosynthetic genes after 

phagocytosis.  This regulation may be via Arg82p and the Arg80p-Mcm1p-Arg81p 

complex, which is known to regulate arginine biosynthesis in S. cerevisiae (23), or it 

might be unique to C. albicans, in which case it would be a candidate target for future 

drugs in case of candidiasis.   
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Table 4-1. Germ tube formation in wild type and mutant C. albicans 

Strain names (Relevant Genotypes in brackets) GlcNAc Arginine Urea CO2 

A72 (Wild Type) + + + + 

KWN6 (dur1,2/dur1,2) + - - + 

KWN8 (dur1,2/dur1,2::DUR1,2/DUR1,2) + + + + 

CAI4 (ura3/ura3) + + + + 

JKC19 (cph1/cph1) - + + + 

HLC52 (efg1/efg1) _ - - - 

HLC54 (cph1/cph1, efg1/efg1) _ - - - 

CAR2 (rim101/rim101) + + + + 
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Figure legends: 

Figure 4-1. Urea amidolyase mutants. 

A. Growth of dur1,2/dur1,2 mutant on urea. Parent strain A72 (DUR1,2/DUR1,2), the 

urea amidolyase mutant KWN6 (dur1,2/dur1,2) and DUR1,2 reconstructed strain KWN8 

(dur1,2/dur1,2::DUR1,2/DUR1,2) streaked on defined media with proline (GPP), urea 

(GPU), arginine (GPR), and proline + urea (GPP+U) as sole nitrogen sources and 

incubated at 30ºC. 

 

B. Germ tube formation by GlcNAc, arginine, urea and CO2 in dur1,2/dur1,2 

mutants. Photomicrographs showing germ tube assay of A72 (DUR1,2/DUR1,2), KWN6 

(dur1,2/dur1,2) and KWN8 (dur1,2/dur1,2::DUR1,2/DUR1,2) strains in presence of 2.6 

mM N-acetyl glucosamine (GlcNAc) (first row), 20mM arginine (second row), and 20 

mM urea (third row), all at 37ºC after 4 hrs, and 5% CO2 (fourth row) at 37ºC after 6 

hours. Photomicrographs in the first three rows are taken in a confocal microscope and 

the fourth row is DIC in a bright field microscope. 

 

Figure 4-2. Germ tube formation by GlcNAc, arginine, urea, and CO2 in non-

filamentous mutants. Photomicrographs showing germ tube assays for CAI4, JKC19 

(cph1/cph1), HLC52 (efg1/efg1), HLC54 (cph1/cph1, efg1/efg1), and CAR2 

(rim101/rim101) in the presence of 2.6 mM N-acetyl glucosamine (GlcNAc) (first 

column), 20mM arginine (second column), 20 mM urea (third column) and 5% CO2 

(fourth column) at 37ºC after 4 hours. Representative photomicrographs in the first three 
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columns are taken in a confocal microscope and the fourth column is DIC in a bright field 

microscope. 

 

Figure 4-3. Suggested pathway for arginine induced germ tube formation.  

Arginine is metabolized to ornithine and urea by arginase (Car1p); urea is degraded to 

CO2 and NH3 by the enzyme urea amidolyase (Dur1,2p); CO2 activates adenyl cyclase 

and the cAMP dependent protein kinase A pathway, thereby activating Efg1p which 

triggers the yeast to hyphal switch inside macrophage.  The two steps catalyzed by Car1p 

and Dur1,2p, are under nitrogen catabolite repression (NCR). L-ornithine can be used as 

an alternative nitrogen source by C. albicans. 

 

Figure 4-4. Interaction of C. albicans with macrophages. Yeast cells were incubated 

ex vivo with RAW264.7 cells in complete culture medium (with 10% serum) at 37ºC in 

5% CO2 and the DIC photomicrographs were taken at 1 hour (first column), 4 hour 

(second column) and 6 hour (third column) time points.   

 

A. C. albicans A72 (DUR1,2/DUR1,2, parental strain) (first row), KWN6 (dur1,2/dur1,2) 

(second row) and KWN8 (dur1,2/dur1,2::DUR1,2/DUR1,2) (third row).  Arrows at 1 hr 

show three C. albicans which had been phagocytized by macrophages and two non-

ingested C. albicans which already have visible germ tubes.  The arrows at 4 hrs for A72 

and KWN8 show C. albicans with visible germ tubes in the process of escaping whereas 

the 4 and 6 hrs arrows for KWN6 show C. albicans yeast cells within the macrophages. 
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B. SC5314 (URA3/URA3, wild type) (first row), CAF2-1 (ura3/URA3) (second row) and 

CAI4 (ura3/ura3, iro1/iro1) (third row)  

 

C. Auxotrophic mutants, BWP17 (his1/his1, arg4/arg4, ura3/ura3) (first row), DAY286 

(his1/his1) (second row), SN152 (his1/his1, arg4/arg4, leu2/leu2) (third row) and 

SN87 (his1/his1, leu2/leu2) (fourth row). 

 

D. gcn4 mutants, CAF2-1 (GCN4/GCN4, parent) (first row), GTC41 (GCN4/gcn4) 

(second row), GTC43 (gcn4/gcn4) (third row) and  GTC45 (ura3/ura3, 

gcn4/gcn4::CIp10-GCN4) (fourth row). 

 

Supplementary Figure Legend  

Figure 4-S1.  Germ tube formation in KWN6 (dur1,2/dur1,2) as induced by 5% CO2. 

KWN6 cells were inoculated into YPD in the presence and absence (not shown) of 5% 

CO2 and shaken at 37
o
C and 200 rpm for the indicated time.  After 1 hr the cells grown 

with 5% CO2 had already induced hyphae whereas those without CO2 had not.  By 4 and 

6 hrs budding yeasts had developed from the hyphae, probably as the result of cell growth 

during that time and a cell density dependent conversion to yeast growth.  

  

Figure 4-S2. Interaction of C. albicans with macrophages. KWN7 

(dur1,2/dur1,2::DUR1,2) cells were incubated ex vivo with RAW264.7 cells in complete 

culture medium (with 10% serum) at 37ºC in 5% CO2 and the DIC photomicrographs 

were taken at 1 hour, 4 hour and 6 hour time points.   
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Figure 4-S3. Interaction of C. albicans with macrophages. Yeast cells were incubated 

ex vivo with RAW264.7 cells in complete culture medium (with 10% serum) at 37ºC in 

5% CO2 and the DIC photomicrographs were taken at 1 hour (first column), 4 hour 

(second column) and 6 hour (third column) time points. SN152 (his1/his1, leu2/leu2, 

arg4/arg4) (first row), KWN2 (dpp3/dpp3, arg4/arg4) (second row), and KWN4 

(dpp3/dpp3::DPP3/DPP3, his1/his1, leu2/leu2, arg4/arg4) (third row).  
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Figure 4-2 
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Figure 4-3 
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Figure 4-4 
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Figure 4-4 
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Figure 4-S3 



www.manaraa.com

114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 

Candida albicans Activates Th17-Inducing Cytokines in Murine Macrophage 

RAW264.7 Line 
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Abstract 

 

 Candida albicans is an opportunistic fungal pathogen that causes candidiasis in 

immune-compromised patients. After being phagocytized by macrophages, C. albicans 

switches from yeast to hyphae and escapes from macrophage by four to six hours. 

However, within that time macrophages respond to beta-glucans of C. albicans through 

TLR2 and express cytokines that induce development of the Th17 subset of T cells, 

which is required for effective immunity to C. albicans.  The purpose of this study was to 

examine the cytokine response of macrophages, if any, within three hours after 

phagocytosis of C. albicans. The murine macrophage line RAW264.7 was challenged 

with wild type live C. albicans or C. albicans that were heat killed, mutants defective in 

forming germ tubes, mutants defective in farnesol production, or a clinical isolate that 

produces farnesoic acid instead of farnesol. Expression of the Th17-inducing cytokines, 

IL-6, TGF-β, and IL-23p40/p19, was evaluated by qRT-PCR. All viable strains except 

the isolate that produces farnesoic acid induced expression of IL-6 up to 1000-fold. 

Hyphae formation did not influence IL-6 expression but it did lower IL-23p19/p40 and 

TGF-β expression significantly. To understand the components in C. albicans responsible 

for expression of Th17-inducing cytokines, RAW264.7 cells were incubated with 

farnesol, farnesoic acid, zymosan, heat killed C. albicans, or combinations thereof.  High 

expression of IL-6 also occurred when macrophages were stimulated with zymosan, a 

TLR2 agonist, and farnesol together. Farnesol alone had little effect on IL-6 induction; 

however zymosan alone induced IL-6.  C. albicans or farnesol plus zymosan increased 

TLR2 expression in RAW264.7 cells. Our results suggest that macrophages challenged 
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with C. albicans quickly express robust levels of IL-6 and to a lesser extent IL-23 

p19/p40, mostly due to responses to farnesol and zymosan together.   

Key words: IL-6, IL23p19/p40, TGF-β, TLR2, Candida albicans, farnesol, zymosan. 

 

Introduction 

Candida albicans is a commensal fungus that colonizes the human oral cavity and 

intestine. It is polymorphic in that it converts between the yeast, hyphal, and 

pseudohyphal forms (1).   Individuals with healthy immune systems limit Candida 

growth at mucosal sites. In contrast, a compromised adaptive immune system often leads 

to mucocandidiasis, oral thrush, or systemic candidiasis with significant mortality (3, 5).  

Key virulence factors leading to mucosal or systemic candidiasis include the following: i) 

morphogenesis – yeast to hyphae switching; ii) phenotypic switching, e.g. white – opaque 

switching; iii) epithelial adhesion; iv) production of extracellular enzymes, e.g. 

phospholipase B and aspartyl proteases; and v) production of farnesol (21-23). Farnesol 

was first identified as a quorum sensing molecule (QSM) in that it blocked the yeast to 

hypha conversion by C. albicans (11). Later we showed that farnesol also acted as a 

virulence factor (21-23). At that time we created a knockout mutation in DPP3, the gene 

encoding a phosphatase which converts farnesyl pyrophosphate to farnesol. This mutant 

KWN2 (dpp3/dpp3) produced six times less farnesol and was ca. 4.2 times less 

pathogenic to mice than its parent (22). 

Since that time we have been interested in farnesol‟s mode of action as a 

virulence factor. This mode of action appears to be distinct from farnesol‟s mode of 

action as a QSM, i.e. blocking hyphal development. As a step towards deciphering 
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farnesol‟s mode of action, we showed that blood from mice pretreated with farnesol had 

significantly reduced levels of the critical Th1 cytokines IFN-γ and IL-12, accompanied 

by elevated IL-5 levels (23). The present paper takes a further step in elucidating 

farnesol‟s mode of action. These experiments are done with the same C. albicans/murine 

macrophage system that we used to show the importance of arginine biosynthesis by C. 

albicans (8). Following ingestion by macrophages, wild type C. albicans turn on arginine 

biosynthesis, and then metabolize that arginine via arginase (CAR1) and urea amidolyase 

(DUR1,2) to activate the yeast to hyphae switch and escape from the macrophage. Wild 

type C. albicans escaped within 4 – 6 hours whereas both arginine auxotrophs and 

dur1,2/dur1,2 mutants were unable to form hyphae or escape (8). A critical unanswered 

question concerns the extent to which macrophages are able to send cytokine signals 

before they are killed. 

Macrophages produce cytokines, some of which direct CD4+ T cell 

differentiation to a phenotype that promotes effective immunity to C. albicans.  

Macrophage IL-12 directs T cell differentiation to the Th1 subset that produces IFN-γ.  

Production of IFN-γ activates macrophages.  We have previously shown that farnesol 

decreases expression of IL-12 from macrophages (22). Alternately macrophage IL-23, 

IL-6, and TGF-β induce a different T cell subset, Th17 (2), which produces IL-17 that is 

required for resistance against mucosal (3) and systemic candidiasis (13).   Production of 

IL-17 leads to accumulation of neutrophils (13), which phagocytize and kill both yeast 

and hyphal versions of C. albicans (28).  However, it is unclear if macrophages that have 

phagocytized C. albicans express these Th17 eliciting cytokines, IL-6, TGF-β, and IL-23 

prior to their death.   
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In order to respond to potential pathogens by making cytokines, macrophages 

express Toll-like receptors (TLRs) that bind to a series of distinctive pathogen associated 

molecular patterns (PAMPs) (14, 16). Cell surface TLR2 responds to the beta-glucans (9) 

and phospholipomannans (18) of C. albicans while TLR4 responds to C. albicans alpha-

mannans (29). However, TLR2 is not alone in its response.  Dectin-1 associates with 

TLR2 to recognize the beta glucans (9) while galectin-3 associates with TLR2 to 

recognize the beta 1,2 mannosides (17). Therefore TLR2 is a key macrophage cell 

surface molecule for responses to C. albicans. 

To examine whether post-phagocytosis hyphae formation and farnesol production 

influence the ability of macrophages to express Th17-inducing cytokines, we have taken 

a genetic and molecular approach. In this report we used five strains of C. albicans, each 

defective in either hyphal formation or farnesol production, to determine the impact of 

these fungal virulence factors on induction of IL-6, IL-23 p19/p40, and TGF-β post-

phagocytosis.  We show that phagocytosis of C. albicans by macrophages rapidly 

induced IL-6 and increased TLR2 expression regardless of hyphae formation or 

production of farnesol.  However, hyphae formation decreased IL-23p19/p40 induction.  

By using farnesol, farnesoic acid, and zymosan (a beta-glucan and TLR2 agonist) alone 

and in combination, we found that farnesol and zymosan act synergistically to induce IL-

6 and IL-23p19/p40 but not TGF-β.  

 

Methods 

Strains, media, growth conditions and chemicals 
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The C. albicans wild type SC5314 and strain SN152 (URA3/ura3::imm434 

his1/his1 arg4/arg4 leu2/leu2 IRO1/iro1::imm436) (25) were obtained from Dr. 

Alexander Johnson, University of California at San Francisco. C. albicans 10231 was 

obtained from
 
the American Type Culture Collection (Rockville, MD). The construction 

of KWN2 (dpp3::C.d.HIS1/ dpp3::C.m.LEU2, his1/his1, leu2/leu2, arg4/arg4) and 

KWN4 (dpp3::DPP3/ dpp3::DPP3, his1/his1, leu2/leu2, arg4/arg4) was described 

previously (22).  

C. albicans strains were grown and maintained in YPD medium (10 g of yeast 

extract, 5 g of peptone and 20 g of glucose per liter) at 30ºC, while auxotrophic mutants 

were grown in YPD supplemented with 40 µg/ml of required amino acid. Resting phase 

cells were grown overnight in YPD at 30ºC, washed 3 times with 50 mM potassium 

phosphate buffer, and stored in the same buffer. These cells were used for co-culture with 

murine macrophage RAW264.7 line. Heat killed cells were prepared by heating the 

resting phase cells at 60 ºC for 2 h. This temperature regime was chosen to be sure the C. 

albicans cells were still intact particles, suitable for phagocytosis. Cell death was 

confirmed by spreading the heat killed cells on YPD plates; there was no growth 

following incubation at 30 ºC for 24 hours (Data not shown). The murine RAW264.7 

macrophage-like cell line was grown in complete culture medium (500 ml of Dulbecco‟s 

Modified Eagle‟s Medium + 50 ml of Fetal Bovine Serum + 0.55 ml of 50 mg/ml 

Gentamycin) at 37C in the presence of 5% CO2. 

The trans, trans - farnesol was purchased from Sigma-Aldrich Chemicals, (E, E) – 

farnesoic acid from Echelon Biosciences Inc., Salt Lake City, UT, and zymosan from 
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Invivogen, San Diego, CA. Farnesol, farnesoic acid, and zymosan were dissolved in 

methanol to make stock solutions prior to use. 

Challenge of macrophages with C. albicans or their components 

One day prior to the experiment, RAW264.7 cells that reached confluence in 

culture media were collected, washed, and counted with a hemacytometer. 10
5
 cells per 

well were plated in culture media in 12-well plates and grown overnight in 5% CO2 at 37 

ºC to allow adherence to the surface. On day zero the non-adherent cells were removed 

from the plates by aspiration and fresh pre-warmed complete culture medium was added.  

Resting phase C. albicans cells were washed with phosphate-buffered saline and their 

concentrations were measured using a Spectronic 20 spectrophotometer. 4x10
5
 cells were 

added to each well (4:1 C. albicans : macrophage ratio), and the plates were incubated for 

1 h, 2 h, or 3 h in 5% CO2 at 37°C. For the challenge of macrophages with various cell 

components, the RAW264.7 line was treated with: a) 5 µM of farnesol; b) 250 µM of 

farnesoic acid; c) 25 µg/ml of zymosan; d) 5 µM of farnesol and 25 µg/ml of zymosan; e) 

250 µM of farnesoic acid and 25 µg/ml of zymosan; f) 5 µM of farnesol and 4x10
5 
heat 

killed SC5314 cells; or g) 250 µM of farnesoic acid and 4x10
5 
heat killed SC5314 cells. 

After 1, 2, and 3 h culture media was removed and 400 µl of lysing buffer (5Prime 

PerfectPure RNA Cell and Tissue, RNA isolation kit) was added to the wells and the 

sample was transferred into tubes and frozen at -80 ºC.  

RNA isolation, cDNA, and RT-PCR  

RNA was extracted using the PerfectPure RNA isolation kit of 5PRIME, Inc. 

(Gaithersburg, MD) according to the manufacturer‟s instructions. cDNAs were prepared 

from 0.3 g of RNA. Quantitative real-time PCR (qRT-PCR) was carried out in the 
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presence of 1 mM dNTPs, 2 M MgCl2, 2U Taq DNA polymerase, 1 M of each primer 

and 1 L of cDNA in 25 L. For IL-6, TGF-β, p19, p40, and GAPDH qRT-PCR was 

performed with the Platinum-SYBR Green I-UDG-quantitative PCR SuperMix 

(Invitrogen) and the following primers: IL-23 p19: 5‟-

GCTGGATTGCAGAGCAGTAATA-3‟/5‟-GCATGCAGAGATTCCGAGAGAG-3‟ 

(124 bp); p40: 5‟-ATGGCCATGTGGGAGCTGGAG-3‟/5‟-

TTTGGTGCTTCACACTTCAGG-3‟ (335 bp); TGF-: 5‟-

TACTGCCGCTTCTGCTCCCAC T-3‟/ 5‟-GATGGCTTCGATGCGCTTCCGT-3‟ (124 

bp); IL-6: 5′-ATGAAGTTCCTCTCTGCAAGAGACT-3‟/ 5′-

CACTAGGTTTGCCGAGTAGATCTC-3′ (638 bp); and GAPDH:  5‟-

TTGTCAGCAATGCATCCTGCAC-3‟/ 5‟-ACAGCTTTCCAGAGGGGC CATC-3‟ 

(149 bp). Quantitative RT-PCR reactions were run on an ABI Prism 7000 thermal cycler 

in which 1 L of cDNA was incubated at 50
o
C for 2 min, 95

o
C for 10 min, followed by 

40 cycles of 95
o
C for 15 s and 60

o
C for30 s. Cycle thresholds (Ct) were normalized to Ct 

for GAPDH for each cDNA and expressed by fold increase using the formula: 2
-Ct

. For 

TLR PCRs, all reactions were 30 cycles of 1 min at 94
o
C, 2 min at 60

o
C, and 2 min at 

72
o
C and then the PCR products were applied to an ethidium bromide 1.8% agarose gel. 

The sense/antisense primers used for PCR analyses of TLRs and GAPDH were as 

follows: TLR1: 5‟-GACTAAACCAAATTCCCTCATC-3‟/5‟-

GTTGTTTGCAAGGGTAGGTCCT-3‟ (149 bp); TLR2: 5‟-

TCTAAAGTCGATCCGCGACAT-3‟/5‟-TACCCAGCTCGCTCACTACGT-3‟ (344 

bp); TLR3: 5‟-TTGTCTTCTGCACGAACCTG-3‟/5‟-CGCAACGCAAGGATTTTATT-

3‟ (204 bp); TLR4: 5‟-CAAGAACAT AGATCTGAGCTTCAACCC-3‟/ 5‟-GCTCTC 
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CAATAGGGAAGCTTTCTAGAG-3‟; TLR5: 5‟-ATGGCATGTCAACTTGACTTGC-

3‟ /5‟-CAGGAGCCTCTCAGTGGTAGTA-3‟ (168 bp); TLR6: 5‟-

ATGGTAAAGTCCCTCTGG GATA-3‟ / 5‟-CATGAGTAAGGTTCCTGTTTGA-3‟ 

(168 bp);TLR7: 5‟-CCCTT ACCATCAACCACATACC-3‟/5‟-

TACACACATTGGCTTTGGACCC-3‟ (125 bp); TLR8: 5‟-

ATGCCCCCTCAGTCATGGATTC-3‟ / 5‟-TTGACGATGGTTGCATTCTGCA-3‟ (150 

bp); TLR9: 5‟-ATGGTTCTCCGTCGAAGGACTC-3‟/5‟-

CAGGAACAGCCAATTGCAGTCC-3‟ (149 bp); TLR11: 5„-

GCCAAGGATGGAAAGACATCA-3‟/ 5‟-CCGAGGTACAG AATGGGATGTA-3‟ 

(167 bp); and GAPDH:  5‟-TTGTCAGCAATGCATCCTGCAC-3‟/ 5‟-

ACAGCTTTCCAGAGGGGCCATC-3‟ (149 bp).   

Mouse Inflammatory Cytokines and Receptors PCR Array 

The mouse inflammatory cytokines and receptors were assayed using a qRT-PCR based 

kit, RT
2
 Profiler PCR Array product # PAMM011 from SA Biosciences, Frederick MD. 

This array contains 84 genes involved in mediating immune cascade reactions during 

inflammation. The chemokines, cytokines, and interleukins involved in the inflammatory 

response are represented as well as their receptors. Untreated, live resting phase SC5314 

cells, and heat killed SC5314 cells (MOI 4:1) were prepared as described above and co-

incubated with RAW264.7 line for 3 h whereupon mRNA was extracted as described 

above and cDNAs were prepared from 0.3 g of RNA. 1 µl of cDNA was added to each 

well of the 96 well plate of RT
2
 Profiler PCR Array. Quantitative PCR reactions were run 

on an ABI Prism 7000 thermal cycler at 50
o
C for 2 min, and 95

o
C for 10 min, followed 
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by 40 cycles of 95
o
C for 15 s, and 60

o
C for30 s. Cycle thresholds (Ct) were normalized to 

Ct for GAPDH for each cDNA and expressed by fold increase using the formula: 2
-Ct

. 

 

Results  

Mouse Inflammatory Cytokines and Receptors PCR Array 

 C. albicans is known to induce several inflammatory cytokines upon recognition 

of C. albicans PAMPs by at least four TLRs (TLR2, TLR4, TLR6, and TLR9) (24). We 

have used a PCR based array kit, RT
2
 Profiler PCR Array product # PAMM011 from SA 

Biosciences, to identify the genes of RAW264.7 line that were up or down regulated 

when challenged with resting phase live or heat killed SC5314 cells for 3 hours. They 

were compared with untreated RAW264.7 line and only those displaying ≥3-fold changes 

were taken for analysis. This quick scan revealed that within 3 hours after phagocytosis 

viable wild type SC5314 induces IL-1β (1278 fold), IL-1α (584 fold), and TNF-α (47 

fold), which are important for pro-inflammatory responses, and activates IL-10 (38 fold), 

which is critical for anti-inflammatory response compared with untreated RAW264.7 

line. Another important Th17-inducing cytokine, TGF-β was also induced 3.5 fold when 

RAW264.7 cells were challenged with live SC5314 for 3 h. We also observed that in 

general the cytokine responses are higher when live C. albicans cells were used 

compared with heat killed cells. Heat killed C. albicans cells induced IL-1β (37 fold), IL-

1α (15 fold), TNF-α (3 fold), and IL-10 (2.5 fold). These results agree with previous 

observations reported by other groups (24) and suggest that both pro-inflammatory and 

anti-inflammatory responses are induced during host-fungus interaction.  
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Role of yeast-mycelia dimorphism in induction of Th17 – inducing cytokines by C. 

albicans. 

Since there is no report so far indicating how Th17 develop following C. albicans 

challenge to the macrophages, we decided to identify the cellular components in C. 

albicans responsible for Th17 inducing cytokines, IL-6, IL-23 p19/p40, and TGF-β (2). 

The response of RAW264.7 cells to five strains of C. albicans was explored.  Expression 

of IL-6, TGF-β, and IL-23 p19/p40 by RAW264.7 cells was followed by qRT-PCR for 

three hours after challenge with five strains of C. albicans (Fig. 5-1). This time frame was 

chosen because in this system wild type C. albicans cells form germ tubes and escape 4 

to 6 hours after ingestion (8). The question is: Do macrophages signal other parts of the 

immune system by way of cytokines before they are killed?  Fig. 5-1 shows that wild 

type C. albicans strain SC5314 rapidly causes macrophages to express IL-6 but not TGF-

β or IL-23 p19/p40. Note that the IL-6 scale is logarithmic and thus expression of IL-6 

mRNA increased almost 1000-fold by 3 hours. IL-6 expression in response to heat killed 

SC5314 was substantially less (Fig. 5-1).  Likewise C. albicans SN152, KWN2, and 

KWN4, which are defective in arginine production and thus are also defective in germ 

tube formation (GTF) and therefore unable to escape from macrophages (8), induced 

~1000-fold increase in IL-6 from RAW264.7 cells (Fig. 5-1). Thus GTF and hyphal 

growth are not necessary for increased IL-6 expression.  These results are consistent with 

the notion that macrophages phagocytizing C. albicans can express substantial amounts 

of a critical cytokine, IL-6, that is necessary for Th17 development before they are killed 

by escaping C. albicans (2, 19).  Furthermore, whether or not the C. albicans express 

GTF after phagocytosis does not affect the level of IL-6 expression within 3 h.   
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Role of farnesol in Th17-inducing cytokine expression. 

Four strains of C. albicans were chosen to determine whether farnesol production 

influenced cytokine production, either positively or negatively. Strain 10231 is a wild 

type strain, capable of GTF and escape from macrophages (Data not shown), but is 

unusual because it produces farnesoic acid (26) rather than farnesol (12). KWN2 

(dpp3::C.d.HIS1/ dpp3::C.m.LEU2, his1/his1, leu2/leu2, arg4/arg4), which was made 

from SN152 (22), is a dpp3/dpp3 mutant defective in the conversion of farnesyl 

pyrophosphate to farnesol. It produces only 15% as much farnesol as its parent SN152 

(22). Both DPP3 and farnesol production were reconstituted in KWN4 (dpp3::DPP3/ 

dpp3::DPP3, his1/his1, leu2/leu2, arg4/arg4) (22).  Fig. 5-1 shows that strains SN152, 

KWN2, and KWN4 all increased IL-6 expression ca. 1000-fold. In contrast, strain 10231 

and heat killed SC5314 elicited only background levels of IL-6, TGF-β, and IL-23 

p19/p40 (Fig. 5-1). Therefore farnesol may play a role in IL-6 expression by 

macrophages. Presumably the 15% farnesol produced by KWN2 (22) is sufficient for 

whatever role farnesol has within the macrophage because the IL-6 expression levels by 

SN152, KWN2, and KWN4 were equivalent (Fig. 5-1).  

 In contrast to the expression of IL-6, expression of TGF-β and IL-23 p19/p40 was 

not as dramatic (Fig. 5-1). SN152, KWN2, and KWN4, which secrete farnesol (22) but 

do not switch from yeast to hyphae inside macrophages (8), stimulated IL-23 p40 one 

hour after challenge in amounts proportional to their farnesol production levels (22). 

However, this expression declined to background levels 2-3 hours after challenge (Fig. 5-

1). Furthermore, two strains that produce hyphae inside macrophages, SC5314 and 

10231, failed to induce IL23 p40 at any time after challenge. One explanation for these 
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observations is that stimulation of IL-23 p40 expression requires molecules present on the 

yeast form of C. albicans that are not present on the hyphal form.  Similarly, expression 

of IL-23p19 was induced by the C. albicans strains that produced farnesol but not hyphae 

(Fig. 5-1). In contrast to IL-6 and IL-23, expression of TGF-β was only induced at 3 

hours and only by strain KWN4 (Fig. 5-1), which produces twice as much farnesol as its 

SN152 parent (22). Therefore, farnesol may play a role in the expression of IL-23 and 

TGF-β by macrophages. 

Synergistic effect of farnesol and zymosan on Th-17 inducing cytokines. 

 The results so far suggest that farnesol and perhaps another component of C. 

albicans cells induces IL-6 and IL-23 expression by macrophages. Zymosan, a beta-

glucan, is a likely candidate for a fungal molecule which could induce cytokines from 

macrophages. As a β-1,3-glucan, it is a major cell wall component of both 

Saccharomyces cerevisiae and C. albicans, known to stimulate cytokine expression by 

acting as a TLR2 agonist (27). Accordingly, we determined which combinations of 

zymosan with farnesol or farnesoic acid induced high levels of IL-6, TGF-β, and IL-

23p19/p40 expression by RAW264.7 line (Fig. 4-2). Zymosan (25 µg/ml), farnesol (5 

µM), or farnesoic acid (250 µM) by themselves failed to stimulate expression of IL-6, 

TGF-β, or IL-23 (Fig. 5-2). However, the combination of zymosan and farnesol induced 

significant expression of IL-6 and IL-23p19/p40, but not TGF-β. For IL-6 (Fig. 5-2), this 

combination of two cellular components was similar to the level of IL-6 mRNA 

expression induced by SC5314, SN152, KWN2, and KWN4 (Fig. 5-1). Farnesoic acid 

and zymosan also stimulated IL-6 and IL-23 p19/p40 even though strain 10231 failed to 
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do so. It is likely that strain 10231 excretes very low levels of farnesoic acid after 

phagocytosis in the first three hours.   

Role of TLRs for recognition of C. albicans and its components 

 Macrophages can phagocytize, kill, and respond to microbes by producing 

cytokines following activation of signaling pathways linked to TLRs. The results so far 

suggest that farnesol and zymosan, a component of the cell wall in C. albicans, 

synergistically induce IL-6 and IL-23 expression from macrophages. Farnesol or 

zymosan alone did not induce macrophage cytokines.  It is possible that farnesol acts by 

increasing expression of TLR2 sufficiently so that it is capable of responding to zymosan.  

To determine if farnesol with or without zymosan modulated expression of TLRs by 

RAW264.7 cells, TLR expression was evaluated by RT-PCR (Fig. 5-3).  Unstimulated 

RAW264.7 cells expressed detectable levels of TLR1, 2, 4, 5, 6, 7, 8, 9, and 11 (Fig. 5-3).  

In contrast RAW264.7 cells challenged with live SC5314 exhibited decreased expression 

of TLR4, 5, 8, 9, 11 but increased expression of TLR2 within 3h (Fig. 5-3).  Farnesol or 

zymosan alone or the combination of farnesol and zymosan decreased expression of 

TLR5, 8, and 11.   In contrast, the combination of farnesol and zymosan increased 

expression of TLR2, 4 and 9.  Therefore, the combination of farnesol and zymosan, a 

known TLR2 agonist, increased expression of TLR2, TLR4 and TLR9 (Fig. 5-3), most 

likely increasing the ability of RAW264.7 line to respond to zymosan.  

 

Discussion 

 We have shown that RAW264.7 murine macrophages express IL-6 and IL-23, 

two Th17-inducing cytokines, within 3 hours of phagocytizing the fungus C. albicans. 
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This rapid time frame is essential for macrophages‟ participation in development of 

adaptive immunity because we previously showed (8) that macrophages which have 

phagocytized C. albicans die within 4 – 6 hours because the fungal pathogen converts to 

hyphae inside the phagosome, pierces the phagosomic and cytoplasmic membranes, and 

escapes. Therefore, macrophages that phagocytize C. albicans, despite their inability to 

kill this fungal pathogen, can potentially transmit cytokine signals that contribute to the 

development of effective anti-fungal adaptive immunity. The cytokines which are 

expressed by macrophages, IL-6 and IL-23, are essential for the induction and 

maintenance of Th17 (2, 15), which in turn secretes IL17 and IL-22 (20).  The Th17 

subset of T cells is critical for a successful immune response to C. albicans infection 

(13).   

It is also clear from this report that two molecular components of C. albicans are 

responsible for stimulating these cytokines.  One of the molecular components is 

farnesol, a quorum sensing molecule excreted by C. albicans (11), and the other 

component is zymosan, a β-1,3-glucan from the yeast cell wall. Zymosan signals 

macrophages through TLR2 acting in collaboration with dectin-1 (9) or TLR6 (10). 

Because TLR2 is known to dimerize with TLR1 (10), TLR6 (10), dectin-1 (9), and 

galectin-3 (17), future experiments will need to sort out which of the dimer partners of 

TLR2 participate in the heightened expression of macrophage cytokines IL-6 and IL-23 

following phagocytosis. Previous reports have shown that zymosan (7) and farnesol (6) 

acting separately can induce expression of IL-6. Indeed, the innate immune response to 

zymosan can also induce aseptic shock, multiorgan failure, and death in the host (5), 

probably due to excess production of zymosan-induced IL-6 (4). However, we show here 
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that farnesol and zymosan acting together induce greater expression of IL-6 and IL-23 by 

macrophages than either of those two factors alone.  Therefore the combination of 

zymosan and farnesol induce macrophages to make the combination of cytokines 

necessary for development of Th17, a T cell subset essential for immunity to C. albicans 

(3, 13). Further studies will be needed to understand the receptor and signaling system 

activated for the macrophage response to farnesol. We suggest farnesol is a molecule 

which associates with or enhances the effect of C. albicans PAMP such as beta-glucan. 

While IL-6 is important in murine induction of Th17, IL-1 is also a critical 

macrophage cytokine for development of Th17 in humans.  Viable and heat-killed 

SC5314 induced IL-1β 1278- and 37-fold, respectively within 3 hours after phagocytosis.   

These results suggest that human macrophages phagocytizing C. albicans will also 

express the additional Th17-inducing cytokine, IL-1β. In general, heat killed C. albicans 

induced far less expression of cytokines compared to the live wild type C. albicans cells. 

Heat killed cells, which are likely to be phagocytized by macrophages, are inactive 

metabolically and therefore cannot produce farnesol or hyphae. In constrast, live C. 

albicans, which are phagocytized by macrophages, switch their morphology from yeast 

to hyphae, produce farnesol, kill the macrophage, and escape from it. Neither C. albicans 

10231 nor heat-killed SC5314 caused increased IL-6 expression (Fig. 5-1). Therefore, 

active farnesol production by C. albicans after phagocytosis is likely necessary for high 

IL-6 expression from macrophages. Similarly, hyphae formation in the phagosome is not 

required but does not prevent cytokine expression since equivalent levels of IL-6 were 

stimulated by the wild type SC5314 and the three arginine auxotrophs, which do not 

produce hyphae. 
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Our long term goal is to discern the role of farnesol in pathogenicity. In doing so 

we must reconcile three quite different modes of action for farnesol. Farnesol was first 

discovered as a quorum sensing molecule (QSM) for C. albicans (11). That is, in vitro C. 

albicans produced and excreted farnesol, and when the farnesol concentration exceeded a 

threshold level it prevented the yeast to hypha switch. Next, in the present paper we 

found that farnesol, together with zymosan, acted as a signal to elicit production of IL-6 

and IL-23. Both of these activities suggest that farnesol production should, if anything, 

decrease virulence. However, whole animal studies showed that farnesol acts instead as a 

virulence factor. C. albicans mutants which produced 6-fold less farnesol were ca. 4-fold 

less virulent (22) and wild type C. albicans which had been treated with sublethal levels 

of fluconazole, thus producing 8-12 times more farnesol (12, 21), were ca. 6-fold more 

virulent (21). It is possible that the high level of inflammatory cytokines induced by 

farnesol in synergism with beta-glucan in vitro is lethal during systemic candidiasis. 

Alternatively, we found that farnesol significantly reduced the mouse serum levels of 

IFN-γ and IL-12 during systemic candidiasis (23), which could prove to enhance 

virulence. Further study will be needed to connect these observations. For now farnesol‟s 

exact mode of action as a virulence factor remains elusive.      

C. albicans that is disseminated in healthy mice through the tail vein clear C. 

albicans systemic infection within 7 days even with 10
5
 inoculum size (21). The time 

frame suggests that innate immunity is not sufficient for complete control of C. albicans 

infection and emphasizes the importance of T cell responses for successful control of 

Candida infection. This dependence on T cell development is the reason we see systemic 

candidiasis results in death in AIDS patients and those who are undergoing 
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chemotherapy, both of which have compromised T cell responses. In many cases the 

current drugs available in the market are unable to treat such patients because of the drug 

resistance and biofilm development by C. albicans. So it will be extremely valuable to 

develop therapies to enhance the appropriate T cell response for effective immunity to C. 

albicans.  
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Figure Legends 

Figure 5-1. RAW264.7 cells express IL-6 (A), TGF-β (B), IL-23 p40 (C) and IL-23 

p19 (D) in response to challenge by C. albicans. Real-time qRT-PCR of IL-6 (A), TGF-

β (B), IL23 p40 (C), and IL-23 p19 (D) mRNA in RAW264.7 cells after 1, 2, and 3 h. A 

total of 1 x 10
5
 RAW264.7 cells was challenged with phosphate buffered saline (PBS) 

(control) or challenged with 4 x 10
5
 (MOI 4:1) cells of SC5314 (wild type), or Heat 

Killed SC5314 (HKSC5314), or 10231 (wild type clinical isolate) – secrete farnesoic acid 

instead of farnesol; or SN152 (URA3/ura3::imm434 his1/his1 arg4/arg4 leu2/leu2 

IRO1/iro1::imm436) – defective in germ tube formation inside macrophage and secrete 

farnesol similar to the wild type; or KWN2 (dpp3::C.d.HIS1/ dpp3::C.m.LEU2, 

his1/his1, leu2/leu2, arg4/arg4) – defective in germ tube formation inside macrophage 

and secrete six times less farnesol compared to the wild type;  or KWN4 (dpp3::DPP3/ 

dpp3::DPP3, his1/his1, leu2/leu2, arg4/arg4) – defective in germ tube formation inside 

macrophage and secrete two times more farnesol compared to the wild type; dissolved in 

phosphate buffered saline (PBS) for 1, 2, and 3 h. Bar graphs represent mean ± SEM of 

three independent experiments compared with GAPDH as positive control. *, Indicates 

that the mean is significantly different from control, p < 0.05. 

 

Figure 5-2. RAW264.7 cytokine expression in response to the challenge by yeast cell 

components. Real-time qRT-PCR of IL-6 (A), TGF-β (B), IL23 p40 (C), and IL-23 p19 

(D) in RAW264.7 cells. A total of 1 x 10
5
 RAW264.7 cells was challenged with 5 µl of 

methanol (control); or farnesol (5 µM); or farnesoic acid (250 µM); or zymosan (25 

µg/ml); or farnesol (5 µM) and zymosan (25 µg/ml) together; or farnesoic acid (250 µM) 
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and zymosan (25 µg/ml) together; or Heat Killed SC5314 (4 x 10
5
) and farnesol (5 µM) 

together; or Heat Killed SC5314 (4 x 10
5
) and farnesoic acid (250 µM) together; 

dissolved in 5 µl of methanol for 3h. Bar graphs represent mean ± SEM of three 

independent experiments compared with GAPDH as positive control. *, Indicates that the 

mean is significantly different from control, p < 0.05. FOH: farnesol; FCOOH: farnesoic 

acid; Zymo: zymosan; HK: heat-killed SC5314 cells. 

 

Figure 5-3. Expression of TLRs in RAW264.7 cells. Total RNA was isolated from 

RAW264.7 cells. RT-PCR for TLR1, 2, 3, 4, 5, 6, 7, 8, 9, 11 and GAPDH (G) was 

performed as outlined in Methods section. After 30 cycles of PCR, cDNA was 

electrophoretically separated on ethidium bromide 1.8% agarose gel.  
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CHAPTER 6 

Future Direction 

This chapter contains data from four studies which are “works in progress”, i.e. not yet 

ready to be fully fledged manuscripts. 
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6.1. The role of aromatic alcohols in morphogenesis in C. albicans.  

Introduction 

Our studies have shown critical regulation of aromatic amino acid metabolism by 

different transcription activators in C. albicans (4). Aromatic amino acid catabolism is 

regulated by Aro80p, Gln3p, Gat1p, and Gcn4p, as well as Rim101p and the pH pathway. 

In case of poor nitrogen conditions these amino acids are utilized by Ehrlich‟s fusel oil 

pathway (4), in which transamination, followed by an irreversible decarboxylation, and 

then reduction, produces aromatic alcohols which are secreted outside the cells (4). Like 

other fungi and yeasts, C. albicans cannot utilize the carbon skeleton of aromatic amino 

acids (4). In our previous studies we have quantified the production of aromatic alcohols 

produced by C. albicans cells grown in different physiological conditions (4). In that 

study we reported that the production of these aromatic alcohols was not influenced much 

by the growth temperature (30 ºC vs. 37 ºC), but was elevated under anaerobic conditions 

compared to aerobic conditions or when the precursor compounds (phenylalanine, 

tyrosine, or tryptophan) were included in the growth media. Conversely, production was 

greatly reduced in the presence of ammonia (even in the presence of other poor nitrogen 

sources) (4).   

One previous study suggests that tyrosol, one of the aromatic alcohols, can reduce 

the lag phase and accelerate germ tube formation in dilute cultures of C. albicans (3). In 

that study tyrosol failed to stimulate hypha formation at higher cell densities or in yeast 

inducing conditions (3). Another study by the same group suggested that phenethyl 

alcohol and tryptophol, but not tyrosol, stimulated morphogenesis in S. cerevisiae cells 

by inducing the expression of FLO11 (important for flocculation) through a Tpk2p-
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dependent mechanism (2). These studies suggest that these aromatic alcohols can induce 

filamentation in fungi and yeasts in a species specific manner. We wanted to address this 

question further if and how these aromatic alcohols can induce hyphal morphogenesis in 

C. albicans and to elucidate the mechanism of actions.  

Results 

Aromatic alcohols induce pseudohyphae in C. albicans:  

 We studied the morphology of C. albicans in the presence of exogenous aromatic 

alcohols. Resting phase cells were inoculated in YPD media at 37 ºC. After the cells had 

reached 0.5 O.D., phenethyl alcohol, tyrosol, or tryptophol were added to a final 

concentration of 100 µM. After 2 hours the cells were stained with calcofluor white and 

cell morphology was evaluated by microscopy. Calcofluor white stains the chitin ring and 

is effective in differentiating hyphae and pseudohyphae (17). In the case of hyphae, the 

chitin ring appears in the filament whereas in case of pseudohyphae the chitin ring is at 

the constricted neck (17). We found that 100 µM phenethyl alcohol, tyrosol, or 

tryptophan induced pseudohyphae (Fig. 6-1). As a control we added 2.5 mM GlcNAc to 

actively growing cells in YPD at 37 ºC and after 2 hours the added GlcNAc had induced 

hypae (Fig. 6-1). 

 We next wanted to address which pathways are involved in the induction of 

pseudohyphae by aromatic alcohols. For this purpose we used mutants defective in the 

cAMP dependent PKA pathway (efg1/efg1), MAP kinase pathway (cph1/cph1), or both 

(cph1/cph1 efg1/efg1). These mutant strains along with their parent CAI4 were tested in 

similar conditions as described above and the morphology was monitored after 2 hours. 

The induction of hyphae was stimulated with 100 µM tyrosol in the parental strain CAI4 
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whereas it stayed as budding yeasts in unsupplemented YPD, all at 37 ºC (data not 

shown). These results confirmed our previous observation (Fig. 6-2). We also used 2.5 

mM GlcNAc as a positive control for hyphal morphology in C. albicans (Fig. 6-2). Each 

of the mutant strains defective in transcription factors for hyphal morphogenesis failed to 

produce either hyphae or pseudohyphae (Fig. 6-2), suggesting involvement of both the 

cAMP dependent PKA kinase and MAP kinase pathways in aromatic alcohol induced 

morphogenesis.    

Farnesol’s mode of action is predominant over tyrosol:  

Several previous studies from our lab show that farnesol can block germ tube 

formation at concentrations as low as 5 µM (8, 12). Thus, we wanted to test if the tyrosol 

induced morphogenesis can override farnesol‟s action or vice versa. We used mGPP at 37 

ºC for 4 hours and quantified the percentage of budding yeasts, hyphae and 

pseudohyphae. In these assay conditions mGPP alone gave 90% hyphal morphogenesis 

while the addition of 5 µM farnesol as expected was able to block the yeast to hyphal 

switch (Fig. 6-3). Increasing amounts of tyrosol (10, 20, 40, 60, and 80 µM) were used 

along with different levels of farnesol (5, 10, and 20 µM) for a farnesol tyrosol 

competition assay. We found that farnesol‟s effect was predominant; at all concentrations 

of farnesol tested, most (>65%) of the C. albicans cells grew as yeasts regardless of how 

much tyrosol was present (Fig. 6-3). However, at higher levels of tyrosol, i.e. 40, 60, and 

80 µM, the percentages of yeast cells were a little bit lower and the percentages of 

pseudohyphae were a little bit higher (Fig. 6-3). The percentages of pseudohyphae always 

increased in the presence of high levels of tyrosol, in a small but consistent manner (Fig. 
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6-3).  This set of data confirms our previous observation (Fig. 6-1) that higher levels of 

the aromatic alcohols induce pseudohyphae in C. albicans.  

Aromatic alcohols induce pseudohyphae by derepressing Gcn4p:  

The accumulation of high levels of fusel alcohols sends a nitrogen starvation 

signal to S. cerevisiae cells, thus inhibiting eukaryotic translation initiation factor 2B 

(eIF2B) (15) and inhibition of eIF2B derepresses Gcn4p (6).  Earlier we showed that as in 

S. cerevisiae the production of fusel alcohols in C. albicans is dependent on nitrogen 

sources. In the presence of preferred nitrogen sources such as ammonia, C. albicans cells 

inhibit the metabolism of aromatic amino acids and we see reduced fusel oil production. 

Similarly, in the presence of poor nitrogen sources like proline fusel oil secretion is much 

higher. When a high level of fusel oil is secreted, these alcohols might send a nitrogen 

starvation signal to the cells that inhibit eIF2B, as was reported earlier in the literature for 

S. cerevisiae (15). This makes sense as the cells will start preparing to go into stationary 

phase when they run out of nitrogen. The cells will also derepress Gcn4p under nitrogen 

starvation conditions or in the absence of any individual amino acid (6). We wanted to 

test if a similar response occurs in C. albicans cells.  

 We tested for the presence of Gcn4p by western blot analysis, using a Gcn4p 

antibody raised against S. cerevisiae. We treated the cells the same as we had for the 

morphological studies just described. Resting cells were inoculated in YPD at 37 ºC and 

at an O.D. of 0.5 the cells were treated with nothing (control) or 100 µM of phenethyl 

alcohol, tyrosol, or tryptophol. After 2 hours the cells were harvested and western blot 

analysis was performed on the total cell lysate. Western analysis revealed that Gcn4p was 

derepressed when the cells were treated with 100 µM phenethyl alcohol, tyrosol, or 
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tryptophol (Fig. 6-4 A). To check if the S. cerevisiae Gcn4p antibody we used was 

actually detecting C. albicans Gcn4p, we grew CAF2 (GCN4/GCN4), GTC41 

(GCN4/gcn4), and GTC43 (gcn4/gcn4) in YPD at 37 ºC. When the cell densities reached 

at 0.5, 40 mM of a histidine analog 3-amino triazole (3AT) was added for 2 hours. 

Western blot analysis of these cells revealed that the S. cerevisiae directed antibodies also 

detected Gcn4p from C. albicans cells since they did not detect anything in the gcn4/gcn4 

mutant GTC43 (Fig. 6-4 B). Also the size of the band (~ 35.3 kDa) appeared at the 

expected region. Together these data supported the conclusion that Gcn4p is derepressed 

in the presence of 100 µM aromatic alcohols (Fig. 6-4 A).  

To distinguish the intervening steps between aromatic alcohol addition and 

elevated Gcn4p, we also used an antibody specific for the phosphorylated form of eIF2α. 

This antibody recognizes eIF2α phosphorylated at serine 52 but not the unphosphorylated 

eIF2α (16). The eIF2α is just upstream of and inhibits eIF2B (6) (see Fig. 1-2) which in 

turn represses Gcn4p. In the presence or absence of aromatic alcohols, phosphorylated 

eIF2α was not detected, suggesting that the aromatic alcohols are activating Gcn4p 

independent of eIF2α. Thus, the pathway for aromatic alcohol activation in C. albicans 

exactly duplicates what Ashe et al (1) reported for S. cerevisiae cells (Fig. 1-2).      

Discussion  

 In this report we demonstrate the role of aromatic alcohols in pseudohyphae 

development in C. albicans cells. At a high concentration of aromatic alcohols (~ 100 

µM), C. albicans cells induced pseudohyphae by a mechanism that was dependent on 

both the cAMP/PKA pathway and the MAP kinase pathway. These concentrations of 

aromatic alcohols are biologically significant in a biofilm where the local micro-
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environment will be anaerobic and/or nutritionally poor. We further show that aromatic 

alcohols induce Gcn4p in an eIF2α independent manner similar to S. cerevisiae cells. 

Under the assay conditions we employed we did not see any effect of these aromatic 

alcohols, in terms of pseudohyphal development, at lower concentrations (10 and 20 

µM). The requirement for high levels of aromatic alcohols for pseudohyphal 

development is consistent with the fact that C. albicans cells actually secrete very high 

levels of the aromatic alcohols. When grown under nitrogen poor conditions, C. albicans 

cells can secrete 1030, 2530, and 660 µg/g of dry weight of phenethyl alcohol, tyrosol, 

and tryptophol respectively at 37 ºC (4). We can expect similar or higher concentrations 

of the exogenous aromatic alcohols in local environments such as inside a biofilm. 

Otherwise, this difference could be cell density dependent, i.e. 10 or 20 µM of exogenous 

fusel oil would work at lower cell density but 100 µM must be required to work at higher 

cell densities. We grew the cells up to 0.5 O.D. which is high cell density ~1.5X10
7
. 

Chen et al 2004 found the effect of tyrosol at 20 µM level and they used much lower cell 

density, i.e. 10
5
 cells/ml.  

In case of C. albicans cells, Gcn4p is also reported to induce hyphal 

morphogenesis by interacting with the Ras-cAMP pathway (17). Our observations that, in 

the presence of aromatic alcohols C. albicans cells induce pseudohyphae, as well as 

derepressing Gcn4p, fit beautifully with the two models (1, 17) and merge them together. 

Derepression of Gcn4p in the presence of aromatic alcohols also makes sense because 

when poor nitrogen sources are being used, the buildup of fusel alcohols externally sends 

a signal to the cells to activate the general amino acid control (GAAC) response by 

activating/elevating Gcn4p. Gcn4p then will activate amino acid biosynthetic genes. In 
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case of C. albicans, Gcn4p also stimulates pseudohyphal development (17). This is the 

reason we saw pseudohyphal development when the cells were treated with the aromatic 

alcohols. The feedback regulation of aromatic amino acid metabolism and its regulation 

in filamentous morphogenesis are described in fig. 6-5.   

It is important that these Gcn4p derepression experiments be repeated in defined 

GPP medium at a series of phosphate concentrations because Hornby et al, 2004 showed 

that high (>300 mM) phosphate caused C. albicans to grow predominantly as 

pseudohyphae (7). We expect that western blots using both anti-Gcn4p and anti-eIF2α-

serP52 antibodies would reveal how high phosphate growth media triggers pseudohyphae 

(7). 

6.2. A hypothesis on recruitment of Tup1p with Gcn4p derepression results in 

morphogenesis in C. albicans 

In one section of the thesis we described how Gcn4p is derepressed during our 

GlcNAc induced germ tube assay. In the same assay, addition of amino acids repressed 

Gcn4p and was accompanied by faster germ tube formation kinetics. We also found that 

added amino acids in the germ tube assay competed with farnesol. That is, a higher level 

(50 µM) of farnesol was needed to block germ tube formation when amino acids (400 

µg/ml) were added to the GlcNAc-induced assay. Confirming this view, 20 µM farnesol 

blocked germ tube formation when amino acids were added after 30 minutes, supporting 

the hypothesis competition between farnesol‟s inhibition and amino acids‟ activation of 

germ tube formation. From the previous study by our group (Kebaara et al, 2008) we 

know that added farnesol increases the levels of TUP1 mRNA and Tup1p protein present. 

In the yeast S. cerevisiae, it has been reported that Gcn4p may enhance its own binding 
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upstream of the amino acid biosynthetic genes by recruiting Tup1p (9). It is very 

tempting to hypothesize similar circumstances in the opportunistic pathogen C. albicans. 

Therefore, in case of nitrogen starvation when Gcn4p is derepressed, the cells will recruit 

Tup1p, a general co-repressor, along with more Gcn4p. That will cause accumulation of 

high level of Tup1p which will bind to the promoter regions of hyphal specific genes as 

repressor. A high level of Tup1p is also observed in farnesol treated cells. This explains 

why we observed a competition between farnesol and amino acid treated cells if amino 

acid treated cells also repress Tup1p.    

6.3. Early phase arginine biosynthesis inside the macrophage is regulated by non-

sense mediated mRNA decay (NMD) pathway in C. albicans 

We have reported the role of arginine metabolism in hyphal morphogenesis and 

its importance as a signal for C. albicans cells engulfed inside macrophage (5). To 

summarize, following phagocytosis by macrophages, C. albicans up-regulates arginine 

biosynthetic genes at the early phase. Arginine can then be broken down by the enzyme 

Car1p (arginase) to urea and ornithine. Urea is degraded to ammonia and CO2 by the 

enzyme Dur1,2p (urea amidolyase). CO2 then acts as a signal and activates cAMP/PKA 

pathway to stimulate hyphae. Inside a macrophage this series of events is critical for the 

C. albicans yeast-to-hyphae switch as was explained in chapter four. So, an important 

question concerns how the arginine biosynthetic genes are up-regulated in a macrophage 

engulfed C. albicans cell at the early phase. Significantly, we found that the arginine 

biosynthetic genes were not up-regulated by the general amino acid control response 

(GAAC). This conclusion is based on gcn4/gcn4 mutants defective in the GAAC 

response (6), but are not defective in the yeast to hyphae switch inside macrophage. We 
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also did not expect that this intra-macrophage arginine biosynthesis would be regulated 

by Gcn4p, which would be expected to activate all the amino acid biosynthetic genes, and 

not just the arginine biosynthetic genes. How are the arginine biosynthetic genes turned 

on specifically? There is only one set of arginine biosynthetic genes in the opportunistic 

fungal pathogen C. albicans. So we hypothesize that arginine biosynthesis can be 

regulated by different transcription factors under different conditions. For example, when 

the cells experience nitrogen stress in general then the transcription factor Gcn4p will 

activate all the amino acid biosynthetic genes, including the arginine biosynthetic 

pathway.  

  In a special condition such as that experienced by C. albicans cells inside 

macrophage, where only arginine biosynthetic genes are up-regulated, it can be a novel 

regulatory mechanism or it may be some other activator like Arg82p or the Arg80p-

Mcm1p-Arg81p complex which regulates arginine biosynthesis, as occurs in the case of 

the yeast S. cerevisiae (11). Another interesting regulation includes the degradation of 

mRNA. If mRNA degradation of the transcript for the arginine biosynthetic genes is 

slow, then we would also expect up-regulation of arginine biosynthesis. From the original 

transcriptional profiling data (10) we find that at the early phase, i.e. at 1 hour, NMD3 

(NAM7/UPF1), NMD5 (orf 19.4188), and orf 19.5136 were down-regulated 0.30-, 0.35-, 

and 0.17- fold respectively in C. albicans cells that had been phagocytized by 

macrophages compared to non-phagocytized cells. This set of data suggests that inside 

the macrophage nonsense mediated mRNA decay (NMD) is shut off. NMD3, NMD5, and 

orf 19.5136 are essential components of NMD in C. albicans. In case of fission yeast 

Schizosaccharomyces pombe, the upf1 mutant, which is defective in NMD, is sensitive to 
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oxidative stress (14). If arginine biosynthetic genes are the targets of NMD, then we can 

correlate these two sets of data and explain how the arginine biosynthetic genes were up-

regulated specifically inside macrophage. We hypothesize that after phagocytosis C. 

albicans cells shut off NMD. Arginine biosynthetic gene transcripts, the normal targets of 

NMD, are degraded less rapidly and thus they are up-regulated at the initial phase 

following phagocytosis.  

6.4. Arginine induced biofilm formation is mediated by nitrogen catabolite 

repression in C. albicans  

 In our previous studies we found arginine induced hyphal morphogenesis in liquid 

cultures of C. albicans [Chapter 4 and (5)]. We also wanted to explore the phenotype of 

C. albicans cells in solid, plate assays. When C. albicans wild type SC5314 and control 

DAY286 cells were grown on YPD or GPP plates at 37 ºC for 2 days, they formed 

smooth colonies (Fig. 6-6 a). But when the nitrogen source was changed to arginine 

(GPR), then the C. albicans cells reproducibly gave rise to wrinkled colonies (Fig. 6-6 a). 

When we screened Dr. Aaron Mitchell‟s collection of C. albicans mutant strains, most of 

the mutants formed wrinkled colonies. The top panel of Fig. 6-6 a shows smooth colonies 

for DAY286 (control strain) on YPD and GPP plates and wrinkled colonies of DAY286 

on GPR plates, all at 37 ºC. We then screened for: mutants that formed wrinkled colonies 

on YPD plates or smooth colonies on GPR plates. Fig. 6-6 b and Table 6-1 shows the 

mutant strains that formed wrinkled colonies on YPD and Fig. 6-6 c and Table 6-2 shows 

the mutant strains that formed smooth colonies on GPR. Annotated genes or ORFs are 

taken from Candida Genome Database (CGD) and are shown at the bottom of each 

photograph. Formation of wrinkled colonies can be associated with the activation of 



www.manaraa.com

154 

 

adhesion genes (ADH) and growth as hyphae. The mutants that formed wrinkled colonies 

in YPD plates are generally defective in that the homozygous mutants have abnormal cell 

wall, defective hyphal growth, or biofilm formation (Candida Genome Database).  

 The mutants that did not form wrinkled colonies on GPR plates are shown in Fig. 

6-6 c and Table 6-2. Among them we selected the bcr1/bcr1 strain that is known to be 

directly related to adhesion (13). Bcr1p is a transcription factor that regulates all the 

adhesion genes (ALS) in C. albicans cells. It is also required for biofilm formation. This 

correlation provides a possible explanation as to why arginine was causing formation of 

wrinkled colonies. We reason that somehow arginine is required to express the ALS genes 

which are important in adhesion, thereby leading to formation of wrinkled colonies. In 

this scenario, the bcr1/bcr1 strain, which is defective in the transcription factor for the 

ALS genes, could not form wrinkled colonies (Fig. 6-6 c).  

The adhesion genes are also required in biofilm formation. The expression of 

BCR1, and thereby activation of the ALS genes, is needed to form biofilms on surfaces. 

So we reasoned that if arginine was an important factor to activate adhesion genes by 

inducing Bcr1p, then arginine should also induce biofilm formation in vitro. We used an 

established method for biofilm formation (13) with the variation that instead of silicon 

squares we used sterilized human tooth discs to promote biofilms. We found that the 

biofilm formation was dependent on the nitrogen source provided using wild type 

SC5314 cells. Ammonia inhibited biofilm formation (Fig. 6-7) whereas proline and 

arginine promoted biofilm formation. A control, mGPP (GPP + GlcNAc) also induced 

biofilm formation. These results, along with the plate based colony morphology data, 

suggest that arginine as well as other poor nitrogen sources activates Bcr1p by inducing 
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NCR and thereby causing wrinkled colony formation on plates and biofilm formation on 

tooth discs. 
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Figure Legends: 

Figure 6-1. Effects of aromatic alcohols in morphogenesis in wild type C. albicans. 

The wild type C. albicans SC5314 cells were grown in YPD at 37 ºC till 0.5 O.D., and 

then treated with either 2.5 mM N-acetyl glucosamine (GlcNAc), or 100 µM phenethyl 

alcohol, tyrosol, or tryptophol for 2 hours. The cells were stained with calcofluor white. 

Photomicrographs (DIC and fluorescent) showing germ tube formation with GlcNAc 

treated cells whereas pseudohyphae formation with aromatic alcohol treated cells. 

Calcofluor white stains the chitin ring which appears at the bud neck in pseudohyphae 

and inside of germ tube in case of true hyphae.  

Figure 6-2. Effects of tyrosol in morphogenesis in non-filamentous mutants. 

Photomicrographs showing germ tube assays for CAI4 (parent), JKC19 (cph1/cph1), 

HLC52 (efg1/efg1), and HLC54 (cph1/cph1, efg1/efg1) in the presence of 2.5 mM N-

acetyl glucosamine (GlcNAc) (first column) and 100 µM tyrosol (TOH) (second column) 

at 37ºC after 4 hours. Representative photomicrographs are taken in a confocal 

microscope. 

Figure 6-3. Farnesol tyrosol competition in morphogenesis in C. albicans. The 

percentage (%) germ tube bioassay was conducted in GPP+GlcNAc (pH 6.5) at 37˚C 

with 0, 5, 10, and 20 μM farnesol (F) and 0, 10, 20, 40, 60 and 80 μM tyrosol (T).  The 

percentages of yeasts (Y), pseudohyphae (P), and mycelia (M) were calculated after 4 

hours.  Last bar, 20 μM farnesol still prevented germ tube formation when added 30 

minutes after the cells were inoculated. Tyrosol was present from To.  

Figure 6-4. Derepression of Gcn4p by aromatic alcohols in C. albicans. a) SC5314 

cells were grown in YPD at 37 ºC till 0.5 O.D., and then treated with nothing, 100 µM 
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tyrosol (TOH), tryptophol (TrpOH), or phenethyl alcohol (PEA) respectively for 2 hours. 

b) CAI4 (GCN4/GCN4), GTC41 (GCN4/gcn4), and GTC43 (gcn4/gcn4) strains were 

grown in YPD at 37 ºC till 0.5 O.D., and then treated with 40 mM of 3-amino triazole 

(3AT) for 2 hours. The presence of Gcn4 protein is shown. Act1 levels were used as 

loading control.   

Figure 6-5. Model for feedback control of amino acid biosynthesis and 

morphogenesis by fusel alcohols in C. albicans. C. albicans can use the aromatic amino 

acids tryptophan, phenylalanine and tyrosine as cellular nitrogen sources.  This results in 

the production of tryptophol, phenylethanol and tyrosol, collectively known as fusel oils.  

Fusel oil production depends on environmental factors including the availability of 

aromatic amino acids, ammonia, oxygen level, and alkaline pH (indicated by dotted 

lines). Aromatic amino acids stimulate Aro80p, a transcription activator required for full 

expression of ARO8 and ARO9 (encoding aromatic transaminases) and ARO10 (aromatic 

decarboxylase). Accumulated aromatic alcohols can then derepress Gcn4p to activate 

amino acid biosynthetic genes. Gcn4p also has a role in hyphal morphogenesis in CPH1 

and EFG1 dependent manner. Genes are in boxes; enzymes/proteins are in ellipses. The 

scheme is based on our findings, as well as on pathways reported for both S. cerevisiae 

and C. albicans by other groups. 

Figure 6-6. Effect of arginine in wrinkled type colony formation in C. albicans. 

Photomicrographs of A) DAY286 showing smooth colony in YPD, and GPP whereas 

wrinkled colony in GPR at 37 ºC after two days (control); B) mutants that formed 

wrinkled colonies in YPD at 37 ºC; and C) mutants that formed smooth colonies in GPR 

at 37 ºC after screening Aaron Mitchell mutants‟ collection.  
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Figure 6-7.  Effect of nitrogen sources on biofilm formation in vitro by wild type C. 

albicans. C. albicans SC5314 cells were grown in YPD overnight at 30
o
C, diluted to an 

OD600 of 0.5 in 2.0 ml of defined media with varying nitrogen source (GPA, GPP, GPP 

with GlcNAc, GPR, or R with Glu), and added to a sterile 12-well plate with each well 

containing an autoclaved tooth disc.  The autoclaved tooth disc had been treated with 

sterile BSA overnight and washed with PBS prior to the biofilm assay.  The plate was 

incubated at 37
o
C for 90 min with agitation at 150 rpm.  Unadhered cells were removed 

by washing the discs with 2 ml of PBS and transferring them to a fresh 12-well plate with 

2 ml of the same nitrogen variable media.   This plate was incubated at 37
o
C for 60 hrs 

with agitation at 150 rpm and biofilm formation was visualized with concanavalin A-

FITC (25 ug/ml, Sigma Chemical, St. Louis, MO).  Biofilms were stained for 1 hr in the 

dark at 37
o
C with agitation at 150 rpm and examined by confocal scanning laser 

microscopy (FU5000) (Nobile et al, 2006).  C. albicans cells are stained green.  Observe 

that the ammonia in GPA inhibited biofilm formation and both arginine and proline 

promoted biofilm formation.  
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Table 6-1: 

Mutant strains that formed wrinkled colonies on YPD 

Strain # CGD information/orf Closest S. cerevisiae homolog 

CW-C-7, 8, 9 orf19.3869 BBC1 

C-A-4 orf19.11410 AZF1 

C-C-4 orf19.3127/CZF1 UME6 

C-E-5 orf19.909/STP4 STP4 

D-B-2 orf19.4662/RLM1 RLM1 

1-A-5 orf19.6760/MDS3 PMD1 

 

Table 6-2: 

Mutant strains that formed smooth colonies on GPR 

Strain # CGD information/orf Closest S. cerevisiae homolog 

C-B-10 orf19.723/BCR1 USV1 

D-A-6 orf19.1358/GCN4 GCN4 

2-C-8 orf19.7381/ZCF37 LYS14 

2-G-8, 9 orf19.6032/SPE1 SPE1 

2-G-4, 5 orf19.1759/PHO23 PHO23 

3-A-10 orf19.3818/GOA1 - 
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Figures: 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 6-1 
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Figure 6-2 
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Figure 6-3 
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Figure 6-4 
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Figure 6-5 



www.manaraa.com

168 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6 
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